Polynomial Algorithm For Learning From Interpretation Transition

Tony Ribeiro'

, Maxime Folschette?, Morgan Magnin'~, Katsumi Inoue

3

(1) Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
(2) Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

(3) National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

tony.ribeiro@ls2n.fr, maxime.folschette@irisa.fr, morgan.magnin@ls2n.fr, oliver.roux@ls2n.fr, inoue@nii.ac. jp

Motivations: Learning Dynamics

e Giiven a set of input/output states of a black-box system, learn its internal mechanics.
e Discrete system: input/output are vectors of same size which contain discrete values.

e Dynamic system: input/output are states of the system and output is the next input.

Problem

Dynamic

Discrete Discrete

State S y S .t e m State

e Goal: produce an artificial system with the same behavior, i.e., a digital twin.
e Representation: propositional logic programs encoding multi-valued discrete variables.

e Method: learn the dynamics of systems from its state transitions.

—he

01 20
— —>
10 02

~—A

— b

.. . a(0,T) - a(2,T-1)
01 20 a(1,T) :- a(0,T-1), b(0,T-1).
Dlg ltal - RES U LTS a(2,7) - a(1,7-1)
TW]_ n ———> a(2,7) :- a(0,T-1), b(2,T-1).
10 02
- b(0,T) :- a(1,T-1).

~ b(1.T) :- b(0,T-1).

b(2,T):- b(2,T-1).

00
00

Formalization: MVL and DMVLP

Definition 1 (Atoms). LetV = {vq,...,vp} be a finite set of n € N variables, and dom : V — N.
The atoms of MVL (denoted A) are of the form v'?! wherev € V and val € 10; dom(v)].

Definition 2 (Multi-valued logic program). A MVLP is a set of MVL rules:

val val val val val,,
VOO(—V1 1/\V2 2/\V3 3/\”'/\Vn’,

\/ N -~ J/
head body

Definition 3 (Dynamic MVLP). LetT CV and F CV such that F =V \7. ADMVLP P is
a MVLP such that VR € P,var(head(R)) € T and W' € body(R),v € F.

Definition 4 (Discrete state). A discrete state s on T (resp. F) of a DMVLP is a function
from T (resp. F) to N. ST (resp. S7) denote the set of all discrete states of T (resp. F).

Definition 5 (Transition). A transition is a couple of states (s,s’) € ST x ST,

Definition 6 (Semantics). A dynamical semantics is a function of (DMVLP — (ST - 50(87)\
{0})) where DMVLP is the set of DMVLPs (p is the power set symbol).

e Ry dominates Ry, written Ry > Ry it head(R1) = head(Ry) and body(q) C body().

e R matches s € S, written R s, if body() C s.
e R realizes the transition (s,s’) € 87 x ST if RMs, head(R) € 5.
o R conflicts with T C 87 x S7 when 3(s,s") € T, (RMsAY(s,s") € T, head(R) & s”).

Definition 7 (Suitable program). Let T C &7 x ST. ADMVLP P is suitable for T when: P is
complete, consistent with T, realizes T and YR not conflicting with T, AR" € P s.t. R > R’.
If in addition, VR € P, all the rules R’ belonging to a MVLP suitable for T are such that
R > R implies R" > R then P is unique, called optimal and denoted Py (T).

Problem: Combinatorial Explosion

GULA and PRIDE:
e In [2] we proposed an Algorithm (GULA) to learn Py(T) but with exponential complexity.

e We introduce an heuristics algorithm PRIDE which trades the completeness of GULA for
a polynomial complexity. PRIDE learns a subset of Py(T) sufficient to realise T.

Run Time

System variables (n)| 7 9 10 | 12 13 15 | 18 23
GULA run time 0.027s5/0.1575]0.49s|2.62s| 5.63s | T.0. | T.O. | T.O.
PRIDE run time |0.005s| 0.02s 0.06s 0.37s 0.484s|1.55s|6.39s|32.43s

Average run time of GULA and PRIDE when learning Boolean networks of
PyBoolNet [3] from at most 10,000 over 3 runs with a time-out (T.0.) of 1,000 seconds.

PRIDE performances allows to learn more complex systems and drastically reduce compu-
tation time of smaller ones.

[1] Katsumi Inoue, Tony Ribeiro, Chiaki Sakama: Learning from interpretation transition. Machine Learning 94(1), 51-79 (2014)

3

PRIDE

PYLFIT

Algorithm: PRIDE

Theorem 1 (Consistent Rule Always exists). Let T C 87 x ST, (s,s') € T and vV e s’. The
rule R = vV — s is consistent with T and realizes (s, s).

Theorem 2 (lrreducible Rules are Optimal). Let R be a rule consistent with a set of transitions

T CS8T xS8T. If YR € {head(R) « body(R) \ {v*°} | vVl & body(R)}, R’ conflicts with T,
then AR” # R consistent with T such that R” > R and thus, R € Py(T).

Idea:
e given positives/negatives examples of occurrence of a target atom valin T;

e we can find a rule R € Pp(T) to explain each positive example s

val

e starting from v'“" < s remove body atom until conflict is not avoidable

Algorithmic properties:

val @, specialise it until consistency and then generalise

e adding only the atoms of s ensure to matches s, in worst case we reach vwal s

e it is faster to start from v

e more variable in the system, more generalization is avoided

val

Algorithm 1 PRIDE(A, T, 7, T) Algorithm 2 search(v'*, pos, Neg, vai)

INPUT : A set of atoms A, a set of transitions T' C

ST x ST, two sets of variables F and T .
OUTPUT: A DMVLP P C Py (T) s.t. P realizes T

INPUT : An atom v’% € A, a state pos € ST
and a set of states Neg_, .1 C st

v
OUTPUT: A MVL rule R € Py (T) s.t. R pos

Observations a=0

Positive Negative
examples examples

for each v¥% € A such that v € 7 do
// 1) Extract positives and negatives e
Pos a1 = {s € ST | 3(s, ") eT,v
Neg yaqi = {s € ST | #(s,s") € T, v

R:=v"% ¢
mples // Specialize R until consistency with Neg_ a1

a
€
S

00 10 »

X
l
l

va
va

for each neg € Neg 41 do
if RM neg then
pick ¢ € (pos \ neg)
R := head(R) < body(R) U {c}

"}
00 10 3

l

>

// 2) Generate the rules of vV%" that are in
Po(T) and that match each state of Pos_,q1

while Pos_y,q; # 0 do
pick pos € Posvval

01 // Generalize R while keeping consistency

for each ¢ € body(R) do // Test each condition
R’ := head(R) + body(R) \ {c}
conflict := false
: // Clean other positives examples covered 11: for each neg € Negv'ual do
10: Pos_yq1 := Pos_yal \{s|s € Pos yat, RMs} 12: if R’ Mneg then // Necessary conc lition
11: P =PU{R} 13: conflict := true; BREAK
12: return P 14: if conflict == false then // R’ is valid

01 11 | 11 15: R:=R'
16: return R

—>»| 01

11 R := search(v'®, pos, Neg_yq1) 10:

11 11 »| 10

We extract positive and negatives examples (feature states) of each target atom
occurrence. Rules should match a positive and no negative while being irreducible.

Implementation: python library and user API

PyLFIT Library
e Open source python library: pip install pylfit
e Contain all LFIT algorithms and a simple user API

e Built-in data/model conversion/usage
User API

e Load raw data of different format into a Dataset object
e Choose desired model type and run corresponding LFIT algorithm

e Use model object for predictions, analysis or convert it to other format

tabular
Csv

Prolog

Time Boolean
Series P Dataset Model] Network

Formated /
data

Process
Hitting

explanations predictions

Predictions:
e DMVLP and CDMVLP (constraints) can be used for predicting possible target states

e WDMVLP model both possibility and impossibility, it also adds weights to rules w.r.t.
observations to allow probabilistic predictions of target atom occurrence in a transition

WDMVLP
Likeliness rules Unlikeliness rules

(3,a% « b1 (30, ¥ « ¢
(15, a1 « bY) (5, a1 « 0

predict(a’, {a', b, O} = (0.75, (15, a’ « bY), (5, a! « V) — Likely
predict(a®, {a, b1, Y} = (0.09, (3, a® « b'), (30, a¥ « ') — Unlikely

e The API provide metrics to evaluate prediction accuracy and quality of explanation rules

Summary

e The polynomiality of PRIDE is obtained at the cost of completeness over Ppy(T).

e Still, the program learned can reproduce all observations and provides minimal explanation
for each of them in the form of optimal rules.

e The source code is available as open source on github and pypi.org (see QR code).

e A user-friendly API allows to easily use LFIT algorithms on different kinds of datasets and
is already being used in several research collaborations [4].

[2] Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue: Learning dynamics with synchronous, asynchronous and general semantics. In: International Conference on Inductive Logic Programming. pp. 118-140. Springer (2018)
] Hannes Klarner, Adam Streck, Heike Siebert: PyBoolNet: a Python package for the generation, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770-772 (2016).

[4] Alfonso Ortega, Julian Fiérrez, Aythami Morales, Zilong Wang, Tony Ribeiro: Symbolic Al for XAl: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment. WACV (Workshops) 2021: 78-87

https://hal.archives-ouvertes.fr/hal-03347026
https://github.com/Tony-sama/pylfit

