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Motivations: Learning Dynamics

e Giiven a set of input/output states of a black-box system, learn its internal mechanics.
e Discrete system: input/output are vectors of same size which contain discrete values.

e Dynamic system: input/output are states of the system and output is the next input.

Problem

Dynamic

Discrete Discrete

State S y S .t e m State

e Goal: produce an artificial system with the same behavior, i.e., a digital twin.
e Representation: propositional logic programs encoding multi-valued discrete variables.

e Method: learn the dynamics of systems from its state transitions.
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. . A a(0,T) :- a(2,T-1)
a(1,T) :- a(0,T-1), b(0,T-1).

Dlg ltal - RES U LTS a(2,7) :- a(1,T-1)
a(2,T) :- a(0,T-1), b(2,T-1).

Twin

b(0,T) :- a(1,T-1).
b(1,T) :- b(0,T-1).
b(2,T):- b(2,T-1).

Formalization: MVL and DMVLP

Definition 1 (Atoms). LetV = {v1,...,vn} be a finite set of n € N variables, and dom : V — N.
The atoms of MVL (denoted A) are of the form vV wherev € V and val € 10; dom(v)].

Definition 2 (Multi-valued logic program). A MVLP is a set of MVL rules:
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Definition 3 (Dynamic MVLP). LetT CV and F CV such that F =V \7T. ADMVLP P is
a MVLP such that YR € P,var(head(R)) € T and W'l body(R),v € F.

Definition 4 (Discrete state). A discrete state s on T (resp. F) of a DMVLP is a function
from T (resp. F) to N. ST (resp. S7) denote the set of all discrete states of T (resp. F).

Definition 5 (Transition). A transition is a couple of states (s,s’) € ST x ST.

Definition 6 (Semantics). A dynamical semantics is a function of (DMVLP — (ST - go(ST)\
{0})) where DMVLP is the set of DMVLPs (p is the power set symbol).

e Ry dominates Ry, written Ry > Ry it head(R1) = head(Ry) and body(q) C body().

e R matches s € 87, written R s, if body() C s.
e R realizes the transition (s,s’) € S7 x ST it Rns, head(R) € s’
o R conflicts with T € 87 x 87 when 3(s,s") € T, (RN s AV(s,s") € T, head(R) ¢ s”).

Definition 7 (Suitable program). Let T C &7 x ST. ADMVLP P is suitable for T when: P is
complete, consistent with T, realizes T and YR not conflicting with T, AR" € P s.t. R > R’.
If in addition, VR € P, all the rules R’ belonging to a MVLP suitable for T are such that
R > R’ implies R" > R then P is unique, called optimal and denoted Py (T).

Problem: Dynamics Semantics

Semantics Decide the target states according to a DMVLP and a feature state.
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A semantics that produce the same states, when being given the atoms of its own
decision is pseudo-idempotent and is compatible with its transition optimal DMVLP.

Definition 8 (Pseudo-idempotent Semantics). Let DS be a dynamical semantics. DS is said
pseudo-idempotent if, for all P a DMVLP: DS(Pn(DS(P))) = DS(P) .
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Algorithm: GULA

Definition 9 (Rule least specialization). Let R be a MVL rule and s € §© such that RN s.
The least specialization of R by s according to F and A is:

Lspe(R, 5, A, F) := {head(R) « body(R) U {v*“} |
ve FAavile Anval ¢ savval e N, vva! ¢ body(R)}.

VT C 87 x 87T, we denote: first(T) := {s € S | I(sq,s2) € T,s1 = s}.

Definition 10 (Program least revision). Let P be a DMVLP, s € §& and T C &7 x ST such
that first(T) = {s}. Let Rp := {R € P | R conflicts with T}. The least revision of P by T

according to A and F is Lyey(P, T, A, F) := (P\ Rp) U Lspe(R, s, A, F).
ReRp

Algorithmic properties:
o Po(fl) = (vl — @ |veTarvwae Al

elet s € 87 and T, 7" C 87 x 8T such that |first(T’)| = 1 A first(T) N first(T') = 0.
Liev(Po(T), T', A, F) is a DMVLP suitable for TU T,

o lf P is a DMVLP suitable for T, then Pn(T)={Re P|VR"e P,R"> R = R = R}.

ldea: Starting from P = Pn(@) we group transitions by common feature state (T’) and
iteratively revise P using Ley(P, T', A, F) and domination relation to obtain Py(T).
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We extract positive and negatives examples (feature states) of each target atom
occurrence. A rule that matches a negative example conflict with the observations.

Learning From Any Semantics Using Constraints

Definition 11 (Constrained DMVLP). Let P be a DMVLP on Ag}f, F and T two sets of
variables, and € a special variable with dom(g) = {0,1} so thate ¢ T UF. ACDMVLP P
is a MVLP such that P = P’U{R € MVL | head(R) = ¢' AW"? & body(R),ve FUT}. A

rule R such that head(R) = el and Wval e body(R),v € FUT is called a MVL constraint.

Definition 12 (Constraint-transition matching). Let (s,s’) € &7 x ST. The constraint C
matches (s, s’), written C N (s, s’), iff body(C) C sU s’

Definition 13 (Suitable and optimal constraints). Let T C 87 x ST. A set of MVL constraints
SC is suitable for T when: SC is consistent with T, complete with T and for all constraints
C not conflicting with T, there exists C' € P such that C' > C. If in addition, for all C € SC,
all the constraint rules C’ belonging to a set of constraints suitable for T are such that
C' > C implies C > C’, then SC is called optimal, is unique and denoted Cy(T).

Definition 14 (Synchronous constrained Semantics). The synchronous constrained semantics
Tsyn—c is defined by:

Tsyn—c : P {(s, s') € ST x 8T | s" C Conclusions(s, P) A
AC € P,head(C)=¢' A CT(s, ")}
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Let T C ST x 87, it holds that T = Tsyn—c(Po(T)U Cp(T)), Le., any semantics is captured.

Contributions

e Previous works: Synchronous deterministic transitions only [1-3].
e Novelty: Learn from any memory-less discrete dynamics semantics.

e Application: semantic choice, which has an important meaning for the one who try to
model a system, can now be done a posteriori. The rules can explain local interactions
and constraint are hints of semantics behaviors.

e Weakness: current complete method is too costly/sensitive to deal with real system.

e Outlook: development of heuristic approach (WDMVLP , PRIDE) to tackle [=] [x]
real data and tools (see other poster) to extract knowledge from the learned .
models.

e The source code is available as open source on Github. See QR-code — [w]
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