Learning any memory-less discrete semantics for dynamical systems

represented by logic programs

Tony Ribeiro'?

(1) Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France

(3) National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Motivations: Learning Dynamics

e Giiven a set of input/output states of a black-box system, learn its internal mechanics.
e Discrete system: input/output are vectors of same size which contain discrete values.

e Dynamic system: input/output are states of the system and output is the next input.

Problem

Dynamic

Discrete Discrete

State S y S .t e m State

e Goal: produce an artificial system with the same behavior, i.e., a digital twin.
e Representation: propositional logic programs encoding multi-valued discrete variables.

e Method: learn the dynamics of systems from its state transitions.

"E

. . A a(0,T) :- a(2,T-1)
a(1,T) :- a(0,T-1), b(0,T-1).

Dlg ltal - RES U LTS a(2,7) :- a(1,T-1)
a(2,T) :- a(0,T-1), b(2,T-1).

Twin

b(0,T) :- a(1,T-1).
b(1,T) :- b(0,T-1).
b(2,T):- b(2,T-1).

Formalization: MVL and DMVLP

Definition 1 (Atoms). LetV = {v1,...,vn} be a finite set of n € N variables, and dom : V — N.
The atoms of MVL (denoted A) are of the form vV wherev € V and val € 10; dom(v)].

Definition 2 (Multi-valued logic program). A MVLP is a set of MVL rules:

val val val val val,,
VOO(—V,] 1/\V2 2/\V3 3/\"’/\VIT’

N~ \ ~ 2
head body

Definition 3 (Dynamic MVLP). LetT CV and F CV such that F =V \7T. ADMVLP P is
a MVLP such that YR € P,var(head(R)) € T and W'l body(R),v € F.

Definition 4 (Discrete state). A discrete state s on T (resp. F) of a DMVLP is a function
from T (resp. F) to N. ST (resp. S7) denote the set of all discrete states of T (resp. F).

Definition 5 (Transition). A transition is a couple of states (s,s’) € ST x ST.

Definition 6 (Semantics). A dynamical semantics is a function of (DMVLP — (ST - go(ST)\
{0})) where DMVLP is the set of DMVLPs (p is the power set symbol).

e Ry dominates Ry, written Ry > Ry it head(R1) = head(Ry) and body(q) C body().

e R matches s € 87, written R s, if body() C s.
e R realizes the transition (s,s’) € S7 x ST it Rns, head(R) € s’
o R conflicts with T € 87 x 87 when 3(s,s") € T, (RN s AV(s,s") € T, head(R) ¢ s”).

Definition 7 (Suitable program). Let T C &7 x ST. ADMVLP P is suitable for T when: P is
complete, consistent with T, realizes T and YR not conflicting with T, AR" € P s.t. R > R’.
If in addition, VR € P, all the rules R’ belonging to a MVLP suitable for T are such that
R > R’ implies R" > R then P is unique, called optimal and denoted Py (T).

Problem: Dynamics Semantics

Semantics Decide the target states according to a DMVLP and a feature state.

00
f(a) := not b. iT

m f(b) := not a. ‘ o w0 \ ‘ o
11

Synchronous

3 GE

Asynchronous General

S D

+[{al b} ch0, ch?) D5

Semantics
Feature state Set of atoms

~ |[012] [002] [102]

Set of target states

Dynamics
Semantics

Union

S D’

001 1010]+ | {a}, a}, 0,0}, ch?}

A semantics that produce the same states, when being given the atoms of its own
decision is pseudo-idempotent and is compatible with its transition optimal DMVLP.

Definition 8 (Pseudo-idempotent Semantics). Let DS be a dynamical semantics. DS is said
pseudo-idempotent if, for all P a DMVLP: DS(Pn(DS(P))) = DS(P) .

, Maxime Folschette?, Morgan Magnin'>, Katsumi Inoue
(2) Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France E

tony.ribeiro@ls2n.fr, maxime.folschette@irisa.fr, morgan.magnin@ls2n.fr, inoue@nii.ac. jp

Synchronizer
O

=i

3

Algorithm: GULA

Definition 9 (Rule least specialization). Let R be a MVL rule and s € §© such that RN s.
The least specialization of R by s according to F and A is:

Lspe(R, 5, A, F) := {head(R) « body(R) U {v*“} |
ve FAavile Anval ¢ savval e N, vva! ¢ body(R)}.

VT C 87 x 87T, we denote: first(T) := {s € S | I(sq,s2) € T,s1 = s}.

Definition 10 (Program least revision). Let P be a DMVLP, s € §& and T C &7 x ST such
that first(T) = {s}. Let Rp := {R € P | R conflicts with T}. The least revision of P by T

according to A and F is Lyey(P, T, A, F) := (P\ Rp) U Lspe(R, s, A, F).
ReRp

Algorithmic properties:
o Po(fl) = (vl — @ |veTarvwae Al

elet s € 87 and T, 7" C 87 x 8T such that |first(T’)| = 1 A first(T) N first(T') = 0.
Liev(Po(T), T', A, F) is a DMVLP suitable for TU T,

o lf P is a DMVLP suitable for T, then Pn(T)={Re P|VR"e P,R"> R = R = R}.

ldea: Starting from P = Pn(@) we group transitions by common feature state (T’) and
iteratively revise P using Ley(P, T', A, F) and domination relation to obtain Py(T).

o Neg,o = {{ay_y, b2 1}, {a; 4, b2 1}}, Py = {a! < 0}
neg € Nega? M

Least specializations P o
T T

t
. — 0 0 0 0 0 0
Observations a=0 (071, br4) {a? =0} {dt —ary, 0l < by} {a? < a0 « by}
— (ai_4, b 4) [{a? < at 4} | {af < ai Aby .} {a? < bi_1}
Positive Negative 0 1 1 1 1
00 examples examp|es . N@_Cjal = {{at—1' bt—1}' {at—1' bt—1}}' Pa1 = {at — ﬂ}
10 > neg € Negul M Least specializations Pa}
00 10 (@00 b1,) | {al B} |{a}alyal< bl Y {al—al,al < b}
> (a1, big) [{ai < ai 4} {ai —aiAb],} {a; < by 4}
01 e Nego = {{ad_1. bi_i} {a? s, bi4}} Py = {b7 < 0}
neg € Negbct) M Least specializations /:)b(tJ
—>»{ 01
11 (C’g—w b:t)—1) {({3? — g} {b(t) ‘0_ a1t—’l1' b(t) ‘_Ob(t)—1} {b(t) — C’Ol—w b‘% — b(r)—1}
(ar_1, bi_4) | {b{ < bt—q Ebt < Cl1t—1 /\1bt—1} 1{bt < diq}
® Neg, = {{a;_y, i1} {ai_y, bi_q}} Py = {b; < 0}
neg € Neg, M
t

11 11 »| 10

Least specializations Py

01 11 | 11 (@} 1, b(t)—1) {b; =0} [{b{«a} bt b1—1} {b{ < a} 4, bt < bi ;}
1 1 T 7 T 0 T 0 T

(ar_1,biq) | {bt < by 4} {bt < ay_y Abi_4} {bt < a;_4}

We extract positive and negatives examples (feature states) of each target atom
occurrence. A rule that matches a negative example conflict with the observations.

Learning From Any Semantics Using Constraints

Definition 11 (Constrained DMVLP). Let P be a DMVLP on Ag}f, F and T two sets of
variables, and € a special variable with dom(g) = {0,1} so thate ¢ T UF. ACDMVLP P
is a MVLP such that P = P’U{R € MVL | head(R) = ¢' AW"? & body(R),ve FUT}. A

rule R such that head(R) = el and Wval e body(R),v € FUT is called a MVL constraint.

Definition 12 (Constraint-transition matching). Let (s,s’) € &7 x ST. The constraint C
matches (s, s’), written C N (s, s’), iff body(C) C sU s’

Definition 13 (Suitable and optimal constraints). Let T C 87 x ST. A set of MVL constraints
SC is suitable for T when: SC is consistent with T, complete with T and for all constraints
C not conflicting with T, there exists C' € P such that C' > C. If in addition, for all C € SC,
all the constraint rules C’ belonging to a set of constraints suitable for T are such that
C' > C implies C > C’, then SC is called optimal, is unique and denoted Cy(T).

Definition 14 (Synchronous constrained Semantics). The synchronous constrained semantics
Tsyn—c is defined by:

Tsyn—c : P {(s, s') € ST x 8T | s" C Conclusions(s, P) A
AC € P,head(C)=¢' A CT(s, ")}

00 /

Constraints AOANER g\ .

- or
Negative examples // a := not b // a:=notb

0 1 0 1

—> 0011 0101 af +b9_; ap + bY_,

Observations

// b := not a // b := not a
0 1 0 1
by < a;_ by < ay_4

1 0 1 0
by < ay_ by < ay_,

> 1010 1100

// Stability rules // Stability rules
N 0000 1111 ap = ag_y a; = ag_

1 1 1 1
a; < a;_q by < by_1

0 0
by < b;_1

1 1 // Degradation
by < by_1 ag - a%_l

Negative examples of constraints are the - RO
observed transitions. GULA can be used < adod el // Constraints

0 0 L 1,1 1
ag,by,ap_q — ap,by,a5_4

to learn constraint with this simple trick. abiofly Eal bbbl

0 ;1 1
ag,by,a;_4

Let T C ST x 87, it holds that T = Tsyn—c(Po(T)U Cp(T)), Le., any semantics is captured.

Contributions

e Previous works: Synchronous deterministic transitions only [1-3].
e Novelty: Learn from any memory-less discrete dynamics semantics.

e Application: semantic choice, which has an important meaning for the one who try to
model a system, can now be done a posteriori. The rules can explain local interactions
and constraint are hints of semantics behaviors.

e Weakness: current complete method is too costly/sensitive to deal with real system.

e Outlook: development of heuristic approach (WDMVLP , PRIDE) to tackle [=] [x]
real data and tools (see other poster) to extract knowledge from the learned .
models.

e The source code is available as open source on Github. See QR-code — [w]

[1] Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin, Domenico Borzacchiello, Francisco Chinesta, Olivier Roux, Katsumi Inoue. Inductive Learning from State Transitions over Continuous Domains, The 27th International Conference on Inductive Logic Programming,
(ILP 2017), Orléans, France.

[2] Tony Ribeiro, Katsumi Inoue. Learning Prime Implicant Conditions From Interpretation Transition, Inductive Logic Programming: Revised and Selected Papers from the 24th International Conference on Inductive Logic Programming, (ILP 2014), pages 108-125, Nancy, France.
Lecture Notes in Artificial Intelligence, Springer.

[3] Katsumi Inoue, Tony Ribeiro, Chiaki Sakama. Learning from Interpretation Transition, Machine Learning Journal, volume 94, issue 1, pages 51-79.

https://hal.archives-ouvertes.fr/hal-02925942
https://github.com/Tony-sama/pylfit

