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Some Methods and Results on BRNs ◦ Classical Analysis of Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman in Journal of Theoretical Biology, 1969]
[Thomas in Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}

• A set of discrete expression levels for each component a ∈ Fa = J0; 2K
• The set of global states F = Fa × Fb × Fz

• Signs on the edges a +−→ z

or signs + thresholds a 2,+−−→ z

• Discrete parameters / evolution functions f a : F→ Fa

a f b(a)
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1 1
2 1

z b f a(z, b)
0 0 1
0 1 0
1 0 1
1 1 2

a b f z (a, b)
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0 1 0
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Some Methods and Results on BRNs ◦ Classical Analysis of Discrete Networks

State-graph of a Discrete Network
Several semantics exist regarding the updates:

• Synchronous (deterministic)
• Asynchronous (non-deterministic)
• Generalized (even more non-deterministic)

In every case, exponential size in the number of components

000 010 001 011

100 110 101 111

200 210 201 211

abz

Attractor = minimal set of states from which the dynamics cannot escape
= terminal strongly connected component

• Stable state (state with no successors)
• Complex attractor (loop or composition of loops)
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Some Methods and Results on BRNs ◦ Classical Analysis of Discrete Networks

Static Analysis of Discrete Networks
[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981]

[Paulevé & Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

• Multiple stable states ⇒ positive cycle in the graph
• Sustained oscillations (complex attractor) ⇒ negative cycle in the graph

z
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+ − +

+
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Proofs:
[Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard, Comet in Discrete Applied Mathematics, 2007]

Other results:
• Lower & upper bounds of the number of attractors
• Functionality of the cycles
• Sufficient condition for no stable state / Topological stable states
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Some Methods and Results on BRNs ◦ Classical Analysis of Discrete Networks

Dynamic Analysis of Discrete Networks

• The static analysis results are too weak to predict the dynamics of independent
components.

Examples:
1) From the initial state (a, b, z) = (0, 0, 0), is it possible to reach z = 2?
2) Does (0, 0, 0) belong to an attractor?
3) What is the set of attractors of the model?

The results of the static analysis are not sufficient.

• Temporal logics (LTL, CTL, CTL∗)

More precise but require to compute the whole state graph

Examples:
1) (a = 0 ∧ b = 0 ∧ z = 0)⇒ EF(z = 2)
2) (a = 0 ∧ b = 0 ∧ z = 0)⇒ AG(EF(a = 0 ∧ b = 0 ∧ z = 0))
3) ???

• Applications

Check a property on a given model: NuSMV, LibDDD, ...
Create a model for which a property holds: SMBioNet, SPuTNIk, ...
[Bernot, Comet, Richard, Guespin in Journal of Theoretical Biology, 2004]
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Some Methods and Results on BRNs ◦ Analysis with the Process Hitting

The Enriched Process Hitting

Synchronized Automata Networks

Standard
Process Hitting

Discrete Networks
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Some Methods and Results on BRNs ◦ Analysis with the Process Hitting

Example of enriched Process Hitting Model
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Some Methods and Results on BRNs ◦ Analysis with the Process Hitting

Static analysis
c

0

1

f

0 1

a

0

1

• No conflict
• All leaves are ∅

a1 a0 �∗ a1 {c0, f1}

f1 f1 �∗ f1 ∅

c0 c0 �∗ c0 ∅

δ = {c0, f1} → a0 � a1
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Some Methods and Results on BRNs ◦ Analysis with μ-calculus

Search for Attractors with Polyadic μ-calculus

{ 2©← 1©}νY .(�1©Y ∧ µZ .( 1© = 2© ∨ ♦1©Z )︸ ︷︷ ︸
ψ

)

︸ ︷︷ ︸
ψ′︸ ︷︷ ︸

ψ′′

• JψK = {(s; t) | s →∗ t}
ψ ≡ “There exists a path from 1© to 2©”

• Jψ′K = {(s; t) | ∀s′, s →∗ s′ ⇒ s′ →∗ t}
ψ′ ≡ “All successors of 1© can reach 2©”

• Jψ′′K = {(s; s) | ∀s′, s →∗ s′ ⇒ s′ →∗ s}
ψ′′ ≡ “ 1© belongs to an attractor”
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Some Methods and Results on BRNs ◦ Analysis with μ-calculus

Adapting to the semantics
• The formulas are currently adapted for state space graphs

• How to apply them directly to the initial models (in Process Hitting)?
• 1) Introduce the semantics into � and ♦
• 2) Adapt the formulas to each model considered

{ 2©← 1©}νY .(�1©Y ∧ µZ .( 1© = 2© ∨ ♦1©Z))

(
n∧

i=1

ci (xi )

)
∧ {y1 ← x1 ∧ ... ∧ yn ← xn}νW .

(
n∧

i=1

�xi W

)
∧

µZ .

(
n∧

j=1

xj = yj

)
∨

(
n∨

j=1

♦xj Z

)
(

n∧
i=1

ci (xi )

)
∧ {y1 ← x1 ∧ ... ∧ yn ← xn}νW .

(∧
h∈H

fh(x1, ..., xn) ∧ [h]xΣ(h)
W

)
∧

µZ .

(
n∧

j=1

xj = yj

)
∨

(∨
h∈H

fh(x1, ..., xn) ∧ 〈h〉xΣ(h)
Z

)
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Other Uses of Polyadic μ-calculus

• Search for cycles

µX .{ 2©← 1©}♦1©(µY . 1© = 2© ∨ ♦1©Y )︸ ︷︷ ︸
ψ

∨ ♦1©X

where ψ ≡ “there exists a path that brings back to token 2©”
JψK = {(u; v) | u →+ v}

• Search for states so that P(u →∗ u) = 1

µX .{ 2©← 1©}�1©(µY . 1© = 2© ∨ (�1©Y ∧ ♦1©>))︸ ︷︷ ︸
φ

∨ ♦1©X

with φ ≡ “from every successor of token 1©, token 2© is necessarily visited again”

• Search for switches

Branchings in the dynamics that prevent going backward

• . . .
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Summary & Conclusion

• Static analysis based on the structure
→ Results on attractors (multiple stable states / complex attractors)
→ But results are imprecise

• Finer analyses of the dynamics
→ Temporal logics
→ Abstract interpretation (Process Hitting)
→ μ-calculus

• μ-calculus
→ Formula for the enumeration of attractors
→ More ongoing work: cycles, switches...
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