Application de la logique de Hoare aux réseaux de régulation génétique avec multiplexes

Maxime FOLSCHETTE

École Centrale de Nantes Cursus ingénieur : Ei3 Informatique Cursus Master Recherche : M2 ASP-SPIE

Encadrants:

Olivier ROUX Morgan MAGNIN

Enjeux et problématique

- ► Gène = séquence de l'ADN codant la production d'une protéine
- Les gènes ne s'expriment pas tous à tout moment / dans toutes les cellules
- Étudier certains mécanismes de régulation
- Modéliser les systèmes de gènes

Enjeux et problématique

Étude des interactions entre gènes

Modéliser les mécanismes de régulation Étude du comportement et de la dynamique

Utilisation du modèle

Simplification cohérente (discrétisation) Mais explosion combinatoire

- → Difficultés d'analyse
- Nouvel outil

Logique de Hoare

→ Implémentations

Plan de la présentation

Modèle de Thomas et logique de Hoare

Réseaux de régulation avec multiplexes Triplets de Hoare et plus faible pré-condition Inférence de paramètres

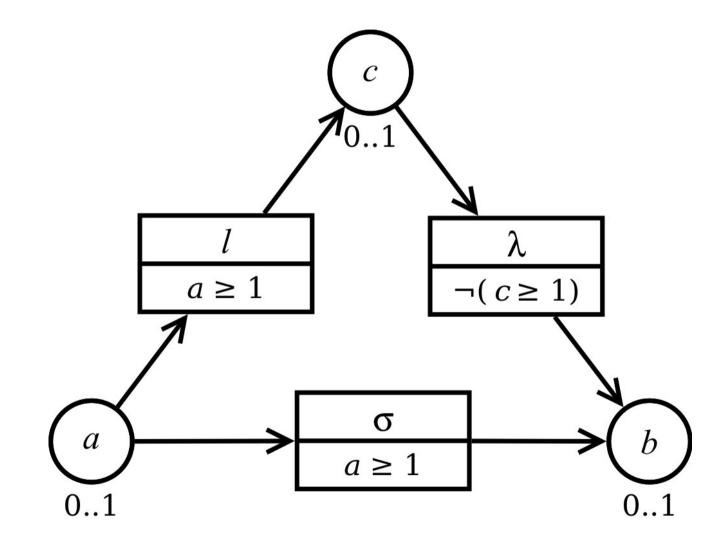
- Implémentation avec Coq
- Implémentation avec OCaml

Présentation des langages Implémentation des outils et de la logique Obtention des résultats / Exemples

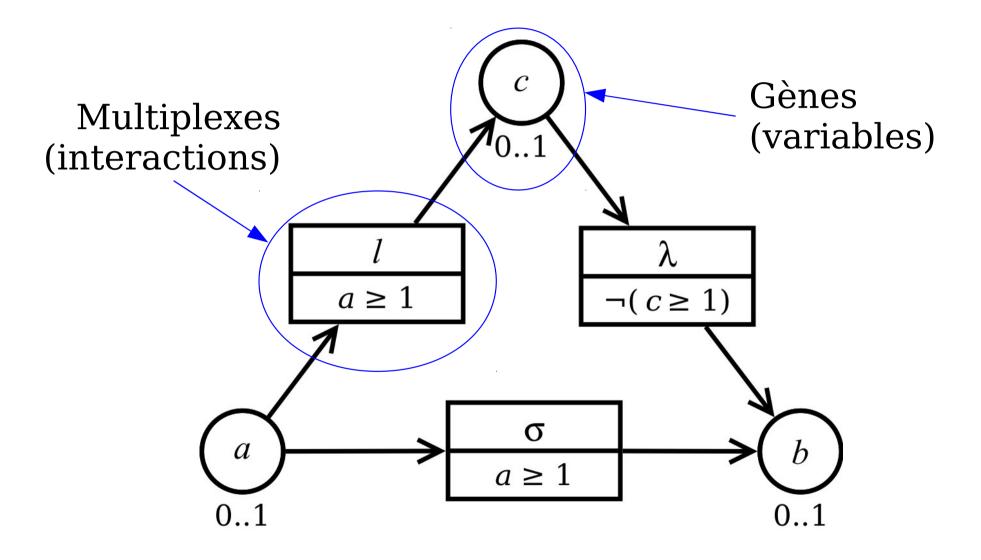
Discussion

Problèmes rencontrés Pistes de développement

Graphe d'interaction [1, 2, 6]



Graphe d'interaction [1, 2, 6]



Carte des tendances:

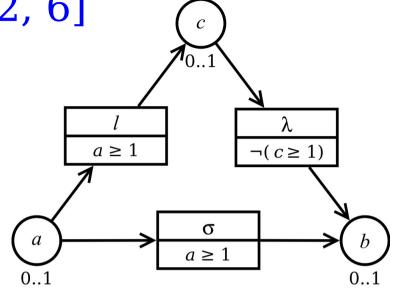
$$K: V \times \mathcal{P}(M) \to \mathbb{N}$$

$$(v ; \omega) \mapsto \mathbf{k}_{\mathbf{v},\omega}$$

Carte des tendances:

$$K: V \times \mathcal{P}(M) \to \mathbb{N}$$

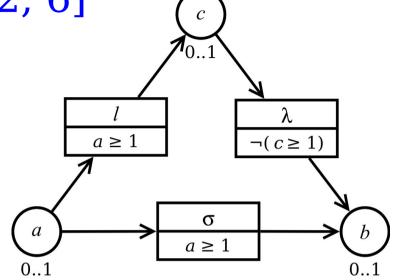
$$(v ; \omega) \mapsto \mathbf{k}_{\mathbf{v},\omega}$$

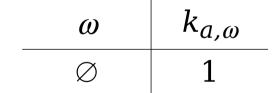


Carte des tendances:

$$K: V \times \mathcal{P}(M) \to \mathbb{N}$$

$$(v ; \omega) \mapsto \mathbf{k}_{\mathbf{v},\omega}$$

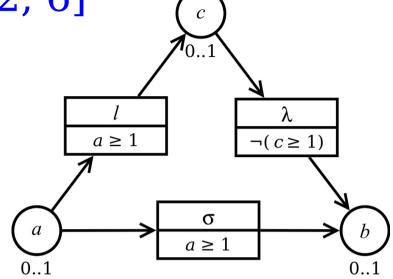




Carte des tendances:

$$K: V \times \mathcal{P}(M) \to \mathbb{N}$$

 $(v ; \omega) \mapsto \mathbf{k}_{v,\omega}$



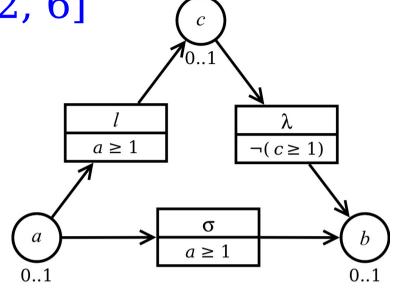
ω	$k_{a,\omega}$	
\varnothing	1	

ω	$k_{c,\omega}$	
Ø	0	
{ <i>l</i> }	1	

Carte des tendances:

$$K: V \times \mathcal{P}(M) \to \mathbb{N}$$

$$(v ; \omega) \mapsto \mathbf{k}_{\mathbf{v},\omega}$$



ω	$k_{a,\omega}$	ω	$k_{b,\omega}$	ω
\varnothing	1	\varnothing	0	$\overline{\emptyset}$
		$\{\lambda\}$	1	{ <i>l</i> }
		$\{\sigma\}$	0	
		$\{\lambda, \sigma\}$	1	

Réseau de régulation [1, 2, 6]

Graphe d'interactions + paramétrisation

→ Décrit entièrement la dynamique du système

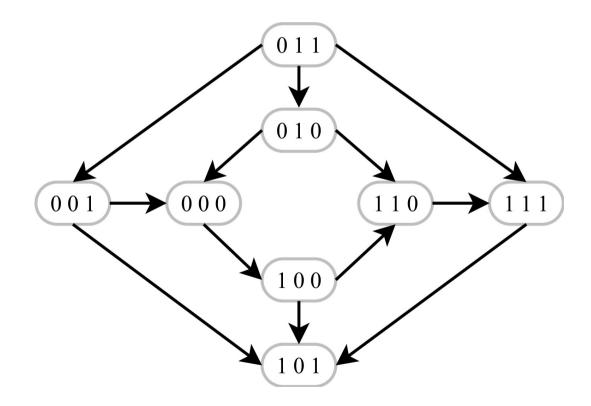
Implémentation

→ Permet le calcul du graphe d'états

Réseau de régulation [1, 2, 6]

Graphe d'interactions + paramétrisation

- → Décrit entièrement la dynamique du système
- → Permet le calcul du graphe d'états



Réseau de régulation [1, 2, 6]

Graphe d'interactions + paramétrisation

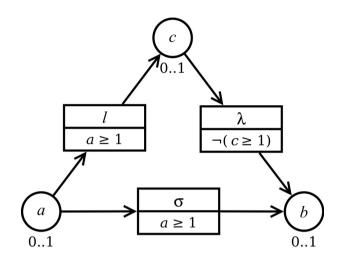
- → Décrit entièrement la dynamique du système
- → Permet le calcul du graphe d'états

Problème: paramétrisation

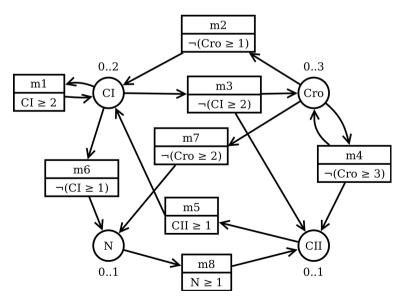
- → Nécessaire pour obtenir le bon comportement
- → Multiples paramétrisations possibles
- → Recherche ⇒ Explosion combinatoire

$$N = \prod_{v} (b_{v} + 1)^{2^{|G^{-1}(v)|}}$$

Explosion combinatoire



$$N = 128$$



N = 6879707136

Logique de Hoare [4]

Triplets de Hoare:

$$\{P\}Q\{R\}$$

P: Pré-condition

Q: Programme informatique

R: Post-condition

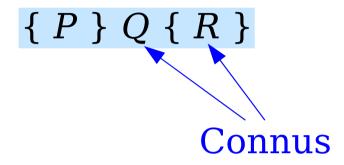
« Si \mathbf{P} est vraie avant exécution de \mathbf{Q} , alors \mathbf{R} sera vraie après exécution de \mathbf{Q} . »

Exemple: $\{ y = 4 \} y = y + 1 \{ y = 5 \}$

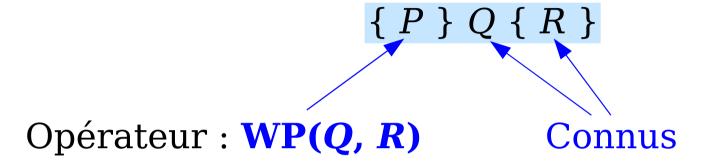
Axiomes et règles [4]

- Axiomes pour fonder la logique
 - \circ Programme vide : { P } Skip { P }
 - ∘ Affectation : { *P*[*expr*/*var*] } *var*:=*expr* { *P* }
- Règles pour construire la logique
 - Conséquence
 - Composition de deux programmes
 - Structures Si-Alors-Sinon et Tant_que
 - Quantificateurs existentiel et universel

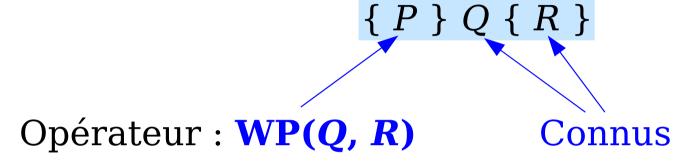
Plus faible pré-condition [5]



Plus faible pré-condition [5]



Plus faible pré-condition [5]

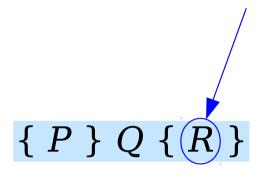


Nouvelles règles pour cet opérateur :

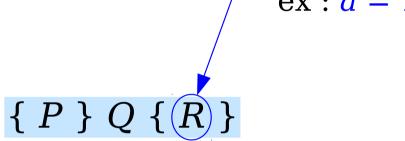
- Composition
- Affectation

$$WP(var := expr, R) \equiv R[expr/var]$$

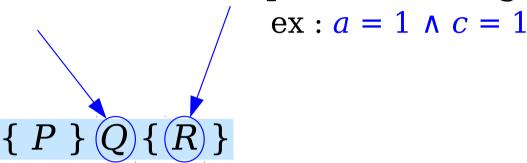
- Structures Si-Alors-Sinon et Tant_que
- → On connaît exactement la pré-condition d'une affectation



Assertion sur le niveau d'expression des gènes / ex : a = 1 \land c = 1



Assertion sur le niveau d'expression des gènes



Évolution du système : incrémentations ou décrémentations

ex: c+

→ Affectations

Assertion sur le niveau d'expression des gènes

 $ex : a = 1 \land c = 1$

Évolution du système : incrémentations ou décrémentations

ex: c+

→ Affectations

Assertion sur le niveau d'expression des gènes

$$ex : a = 1 \land c = 1$$

Évolution du système : incrémentations ou décrémentations ex : c+

Assertion sur le niveau d'expression des gènes

 $ex : a = 1 \land c = 1$

→ Affectations

 $\{P\}Q\{R\}$

Calcul de la plus faible pré-condition

Évolution du système : incrémentations ou décrémentations

ex: c+

→ Affectations

Assertion sur le niveau d'expression des gènes

$$ex : a = 1 \land c = 1$$

Calcul de la plus faible pré-condition

- ⇒ Assertion sur :
 - le niveau d'expression des gènes $ex : a = 1 \land c = 0$
 - la paramétrisation $ex : k_{c,\{l\}} = 1$

$$\{ c + \{ a = 1 \land c = 1 \}$$

Implémentation

$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

Exemple d'application :

```
\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}
```

où Φ signifie « On peut incrémenter $c \gg$, i.e.:

- -c est en dessous de son plafond
- la paramétrisation de *c* permet son incrémentation

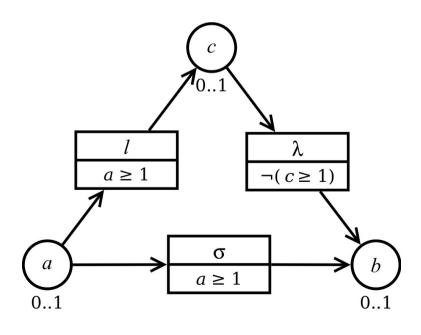
$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \phi_l \Rightarrow k_{c,\emptyset} > c$$

$$\phi_l \Rightarrow k_{c,\{l\}} > c$$

$$où : \varphi_l \equiv (a \ge 1)$$



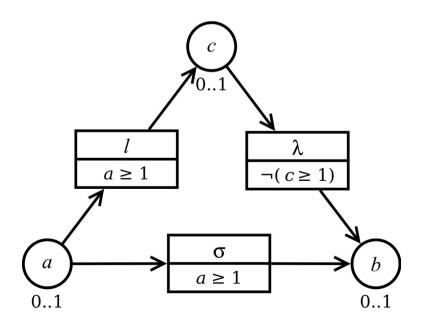
$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \phi_l \Rightarrow k_{c,\emptyset} > c$$

$$\phi_l \Rightarrow k_{c,\{l\}} > c$$

$$où : \varphi_l \equiv (a \ge 1)$$



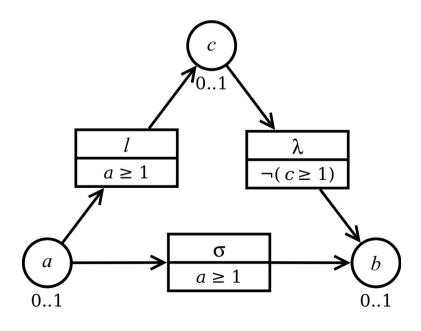
$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \phi_l \Rightarrow k_{c,\emptyset} > c$$

$$\phi_l \Rightarrow k_{c,\{l\}} > c$$

$$où : \varphi_l \equiv vrai$$

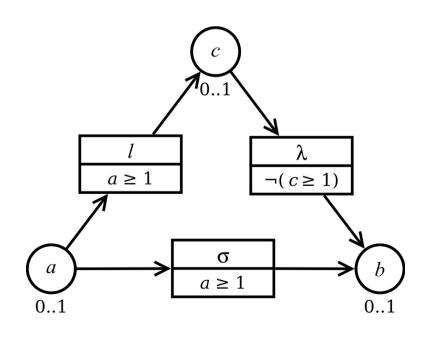


$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \phi_l \Rightarrow k_{c,\emptyset} > c$$

$$\phi_l \Rightarrow k_{c,\{l\}} > c$$



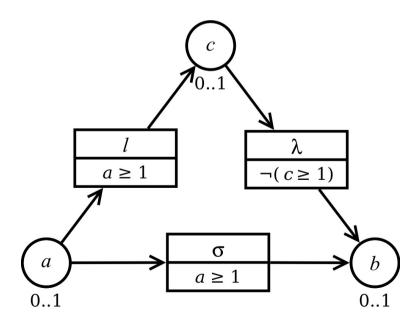
$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \varphi_l \Rightarrow k_{c,\emptyset} > c$$

$$\varphi_l \Rightarrow k_{c,\{l\}} > c$$

$$où : \varphi_l \equiv vrai$$



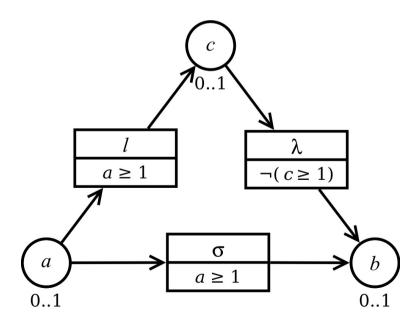
$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \varphi_l \Rightarrow k_{c,\emptyset} > c$$

$$\varphi_l \Rightarrow k_{c,\{l\}} > 0$$

$$où : \varphi_l \equiv vrai$$



Application au modèle de Thomas

Exemple d'application :

$$\{ \Phi \land a = 1 \land c = 0 \} c + \{ a = 1 \land c = 1 \}$$

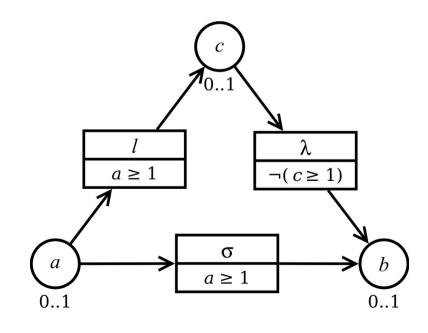
$$\Phi \equiv c \ge 0 \land c < 1$$

$$\neg \varphi_l \Rightarrow k_{c,\emptyset} > c$$

$$\varphi_l \Rightarrow k_{c,\{l\}} > 0$$

$$\Phi \equiv k_{C,\{l\}} = 1$$

$$où : \varphi_l \equiv vrai$$



Discussion

Inconvénient du modèle de Thomas : Beaucoup de paramétrisations possibles

Utilisation de la logique de Hoare : permet l'inférence de paramètres biologiques *via* l'opérateur de plus faible pré-condition

Avantages:

- Pas de recherche exhaustive
- Dispense de construire le graphe d'états

Présentation de Coq et pistes d'implémentation

Assistant de preuves formelles

→ Permet d'effectuer des démonstrations mathématiques de façon formelle

Langage : Gallina

→ Programmation fonctionnelle

Bases de l'implémentation :

- → Tutorial on Hoare Logic de Sylvain Boulmé
- → Software Foundations de Benjamin C. Pierce

Définitions inductives :

- Créent de nouveaux types
- Définitions syntaxiques (sans sémantique)
 - → la sémantique vient avec l'utilisation

Définitions fonctionnelles :

```
Definition deux : nat :=
   S (S O).

Definition plus_deux (n : nat) : nat :=
   S (S n).
```

- Créent de nouveaux objets à partir d'objets existants
- Programmation centrée sur le résultat du calcul (et non sur l'impact sur la machine)

Définitions de points fixes :

$$n + m \Rightarrow (n-1) + m \Rightarrow (n-2) + m \Rightarrow ... \Rightarrow 0 + m$$

- Permettent des définitions récursives
- Assurance de terminaison requise (décroissance structurelle d'un argument)

Propriétés

```
Definition p1 : Prop :=
  2 + 2 = 4.
Definition p2 : Prop :=
  2 + 2 = 22.
Definition p3 : Prop :=
  forall (n:nat), 0 + n = n.
```

- Propriétés mathématiques
- Sans valeur de vérité (cf p2)
- Une fonction peut retourner une propriété

Preuves:

• Débutées lorsqu'un théorème est formulé :

```
Theorem obvious : forall n:nat,
  plus_deux n = deux -> n = 0.
Proof.
```

• Environnement de preuve :

```
n: nat
H: plus_deux n = deux
n = 0
Contexte
(hypothèses)
Contexte
(hypothèses)
Objectif(s)
```

• Utilisation de tactiques Développer, Simplifier, Reformuler, Conclure...

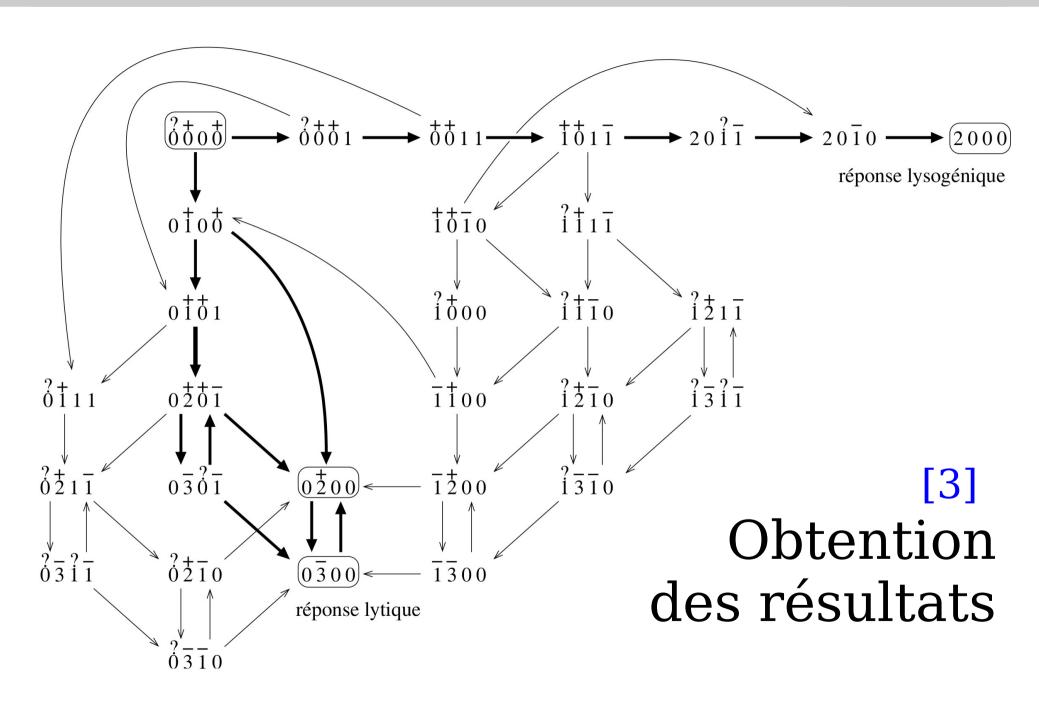
Implémentation avec Coq

Modèle de Thomas

- Variables / multiplexes :
 constructeurs (abstraction)
 relation d'ordre (utilisation)
- Environnements : **listes** [1 ; 0 ; 0]

Logique de Hoare

- Prédicats : fonctions env -> Prop
- Programmes : **définition syntaxique**
- Calcul de précondition : fonction récursive
- Résultats : **prédicats**



```
(*** Réponse lysogénique du phage lambda ***)
  (* Programme *)
Definition prog lyso :=
 N++ ;; CII++ ;; CI++ ;; CI++ ;; N-- ;; CII--.
  (* Post-condition *)
Definition post lyso := fun (e:env) =>
  (CI = 2 /\ Cro = 0 /\ CII = 0 /\ N = 0).
  (* Calcul de la plus faible pré-condition *)
Definition pre lyso := wp prog lyso post lyso.
  (* Évaluation *)
Eval compute in pre lyso.
```

```
Cro' = 0 / CII' + 1 - 1 = 0 / N' + 1 - 1 = 0) / 
  1 <= CII' + 1 /\
  CII' + 1 <= 1 /\
   (eval formula (NEG (ATOMV CI 2))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false /\
   eval formula (NEG (ATOMV Cro 3))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false /\
    eval formula (ATOMV N 1)
      [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false ->
    S (K CII []) <= CII' + 1) /\
   (eval formula (NEG (ATOMV CI 2))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = true /\
   eval formula (NEG (ATOMV Cro 3))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false /\
    eval formula (ATOMV N 1)
      [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false ->
    S (K CII [m3]) \leq CII' + 1) / 
   (eval formula (NEG (ATOMV CI 2))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false /\
    eval formula (NEG (ATOMV Cro 3))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = true /\
    eval formula (ATOMV N 1)
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false ->
    S (K CII [m4]) \leq CII' + 1) / 
   (eval formula (NEG (ATOMV CI 2))
      [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false /\
    eval formula (NEG (ATOMV Cro 3))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = false /\
    eval formula (ATOMV N 1)
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = true ->
    S (K CII [m8]) <= CII' + 1) /\
   (eval formula (NEG (ATOMV CI 2))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = true /\
   eval formula (NEG (ATOMV Cro 3))
     [CI' + 1 + 1; Cro'; CII' + 1; N' + 1 - 1] = true /\
```

[...]

```
[ • • • ]
H26: true = false -> true = false -> 2 <= K CI []
H18 : true = false -> 1 <= K CI [m2]
H53 : 2 \le K CI [m2; m5]
H28 : true = false -> S (K N []) <= 1
H42 : 1 \le K CI [m2; m5]
H14 : true = false -> 1 <= K CII [m3; m4]
H13 : true = false -> true = false -> 1 <= K CI []
H43 : true = false -> true = true -> 2 <= K CI [m5]
H21 : 1 \le K CII [m3; m4; m8]
H35 : true = false -> true = true -> 1 <= K CI [m5]
H34 : S (K N [m7]) <= 1
H17 : 1 \le K N [m6; m7]
H49 : false = true -> S (K CII [m4; m8]) <= 1
H36 : S (K CII [m4]) <= 1
      [...]
```

[• • •] H26: true = false -> true = false -> 2 <= K CI [] : true = false -> 1 <= K CI [m2] $H53 : 2 \le K CI [m2; m5]$: true = false -> S (K N []) <= 1 $: 1 \le K CI [m2; m5]$: true = false -> 1 <= K CII [m3; m4] H13 : true = false -> true = false -> 1 <= K CI [] : true = false -> true = true -> 2 <= K CI [m5] : $1 \le K CII [m3; m4; m8]$ H35 : true = false -> true = true -> 1 <= K CI [m5] H34 : S (K N [m7]) <= 1 $H17 : 1 \le K N [m6; m7]$ H49 : false = true -> S (K CII [m4; m8]) <= 1 H36 : S (K CII [m4]) <= 1[...]

```
[ • • • ]
H26: true = false -> true = false -> 2 <= K CI []
H18 : true = false -> 1 <= K CI [m2]
H53 : 2 \le K CI [m2; m5]
H28 : true = false -> S (K N []) <= 1
H42 : 1 \le K CI [m2; m5]
H14: true = false -> 1 <= K CII [m3; m4]
H13 : true = false -> true = false -> 1 <= K CI []
H43 : true = false -> true = true -> 2 <= K CI [m5]
H21 : 1 \le K CII [m3; m4; m8]
H35 : true = false -> true = true -> 1 <= K CI [m5]
H34 : S (K N [m7]) <= 1
H17 : 1 \le K N [m6; m7]
H49 : false = true -> S (K CII [m4; m8]) <= 1
H36 : S (K CII [m4]) <= 1
      [...]
```

Résultats sur le phage lambda [3]

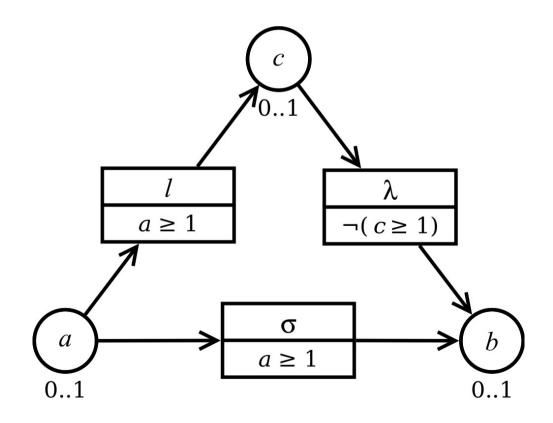
→ Informations sur la paramétrisation
 à partir des chemins « biologiquement réalistes »

```
\kappa_{\rm cI}(\emptyset) = 0, 1 \text{ ou } \mathbf{2}
    \kappa_{\rm cI}(\{{\rm cI}\}) = [2]
   \kappa_{\rm cI}(\{{\rm cro}\}) = [\mathbf{0}]
                                                                          \bullet \kappa_{\rm cro}(\emptyset) = [3]
                                                    \kappa_{\rm cro}(\{cI\}) = [0]
\bullet \kappa_{cI}(\{cII\}) = [2]
    \kappa_{cI}(\{cI, cro\}) = (\mathbf{0}), 1 \text{ ou } 2
                                                                          • \kappa_{cro}(\{cro\}) = (0), (1) \text{ ou } [2]
   \kappa_{\text{cI}}(\{\text{cI},\text{cII}\}) = [2]
                                                                           \kappa_{\rm cro}(\{{\rm cI,cro}\}) = (\mathbf{0}), (1) \text{ ou } [\![2]\!]
   \kappa_{\rm cI}(\{{\rm cro,cII}\})=0,1 \text{ ou } \mathbf{2}
   \kappa_{\rm cI}(\{{\rm cI, cro, cII}\}) = (0), 1 \text{ ou } 2
        \kappa_{\text{cII}}(\emptyset) = [\mathbf{0}]
   \bullet \kappa_{\text{cII}}(\{\text{cI}\}) = [\mathbf{0}]
        \kappa_{\text{cII}}(\{\text{cro}\}) = [\mathbf{0}]
                                                                                     \kappa_{N}(\emptyset)
                                                                                                                     = \llbracket 1 
rbracket
   \kappa_{\text{cII}}(\{N\}) = [1]

    κ<sub>N</sub>({cI})

                                                                                                                     = [0]
        \kappa_{\text{cII}}(\{\text{cI}, \text{cro}\}) = \llbracket \mathbf{0} \rrbracket
                                                                                     \kappa_{N}(\{cro\})
                                                                                                                     = [0]
        \kappa_{\text{cII}}(\{\text{cI}, \text{N}\}) = \mathbf{0} \text{ ou } 1
                                                                                     \kappa_{N}(\{cI, cro\}) = \llbracket \mathbf{0} \rrbracket
        \kappa_{\text{cII}}(\{\text{cro}, N\}) = \mathbf{0} \text{ ou } 1
        \kappa_{\text{cII}}(\{\text{cI}, \text{cro}, \text{N}\}) = \llbracket \mathbf{0} \rrbracket
```

But : retrouver les résultats du papier « A Hoare logic to identify parameter values of discrete models of gene regulatory networks »



I — WP
$$(b+; c+; b-, a = 1 \land b = 0 \land c = 1)$$

 $\Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0$

I — WP
$$(b+; c+; b-, a = 1 \land b = 0 \land c = 1)$$

 $\Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0$

```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
\Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
II — WP (b+; b-, Vrai)
\Rightarrow Faux
```

```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)

\Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0

II — WP (b+; b-, Vrai)

\Rightarrow Faux
```

```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
 \Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
II — WP (b+; b-, Vrai)
 → Faux
III — { a = 1 \land b = 0 \land c = 0 \land
          k_{b,\{\sigma,\lambda\}} = 1 \wedge k_{c,\{l\}} = 1 \wedge k_{b,\{\sigma\}} = 0
            While (b < 1) With (I) Do \exists (b+, b-, c+, c-)
       \{b=1\} n'est pas un triplet valide
```

```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
 \Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
II — WP (b+; b-, Vrai)
 → Faux
III — { a = 1 \land b = 0 \land c = 0 \land
         k_{b,\{\sigma,\lambda\}} = 1 \wedge k_{c,\{l\}} = 1 \wedge k_{b,\{\sigma\}} = 0
            While (b < 1) With (I) Do \exists (b+, b-, c+, c-)
       \{b=1\} n'est pas un triplet valide
```

Conclusion sur Coq

- Les premiers résultats portent sur des programmes « simples » (sans boucle)
- Les résultats sont en accord avec les résultats obtenus sur papier
- Résultats partiels
- Implémentation incomplète

Présentation d'OCaml et pistes d'implémentation

But : Produire davantage de résultats

Langage de programmation

- → Programmation fonctionnelle
- → Langage proche de Gallina, mais plus souple et plus classique

Bases de l'implémentation :

→ Travail déjà réalisé avec Coq

Présentation d'OCaml

Définitions:

```
let plus_deux n = n + 2 ;;
```

- Outils puissants
- Plus de souplesse :
 - Exceptions
 - Définitions récursives moins contraignantes
 - Caractéristiques impératives
- Traduction aisée depuis Gallina (syntaxe)

Implémentation avec OCaml

Modèle de Thomas

- Variables / multiplexes : chaînes de caractères
- Environnements : listes d'association

```
[ ("a", 1); ("b", 0); ("c", 0)]
```

Logique de Hoare

- Conditions : **fonctions** env -> bool
- Programmes : **définition syntaxique**
- Calcul de précondition : fonction récursive
- Résultats : ensemble de solutions (environnement + paramétrisation)

```
(* Programme *)
let prog_ex = (* b+ ; c+ ; b- *)
Iseq (Iseq (Iincr "b", Iincr "c"), Idecr "b") ;;
  (* Post-condition *)
let post_ex = fun p e -> get "b" e = 0 ;;
  (* Calcul de la plus faible pré-condition *)
let pre_wp_ex = synt_wp prog post ;;
```

```
(* Programme *)
let prog ex = (* b+ ; c+ ; b- *)
 Iseq (Iseq (Iincr "b", Iincr "c"), Idecr "b") ;;
  (* Post-condition *)
let post ex = fun p e -> get "b" e = 0 ;;
  (* Calcul de la plus faible pré-condition *)
let pre wp ex = synt wp prog post ;;
  (* Raffinement *)
let pre ex = fun p e -> (pre wp ex p e) &&
 (get "a" e = 1 \& \& get "b" e = 0 \& \& get "c" e = 0);;
  (* Résolution *)
let solution = solvevp pre ex ;;
```

```
16 solutions
a=1; b=0; c=0;
a/{}=0; b/{}=0; b/{}=0; b/{}lambda}=0; b/{}lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{}=1;
a=1; b=0; c=0;
a/{}=1; b/{}=0; b/{lambda}=0; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{l}=1;
a=1; b=0; c=0;
a/{}=0; b/{}=1; b/{lambda}=0; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{l}=1;
a=1; b=0; c=0;
a/{}=1; b/{}=1; b/{}=1; b/{lambda}=0; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{l}=1;
a=1; b=0; c=0;
a/{}=0; b/{}=0; b/{}=0; b/{}lambda}=1; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{}=1;
a=1; b=0; c=0;
a/{}=1; b/{}=0; b/{lambda}=1; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{l}=1;
a=1; b=0; c=0;
a/{}=0; b/{}=1; b/{lambda}=1; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{1}=1;
a=1; b=0; c=0;
a/{}=1; b/{}=1; b/{}=1; b/{lambda}=1; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=0; c/{}=1;
a=1; b=0; c=0;
a/{}=0; b/{}=0; b/{}=0; b/{}lambda}=0; b/{}lambda,sigma}=1; b/{sigma}=0; c/{}=1; c/{}1}=1;
a=1; b=0; c=0;
a/{}=1; b/{}=0; b/{lambda}=0; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=1; c/{l}=1;
a=1; b=0; c=0;
a/{}=0; b/{}=1; b/{lambda}=0; b/{lambda,sigma}=1; b/{sigma}=0; c/{}=1; c/{l}=1;
a=1; b=0; c=0;
```

[...]

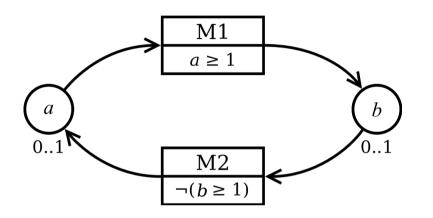
```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
           \Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
II — WP (b+;b-,Vrai)
           ⇒ Faux
III — { a = 1 \land b = 0 \land c = 0 \land
          k_{b,\{\sigma,\lambda\}} = 1 \wedge k_{c,\{l\}} = 1 \wedge k_{b,\{\sigma\}} = 0
             While (b < 1) With (I) Do \exists (b+, b-, c+, c-)
        \{b=1\} n'est pas un triplet valide
```

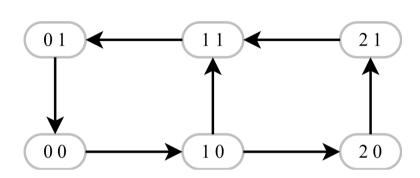
```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
 \Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
   (16 solutions)
II — WP (b+; b-, Vrai)
           ⇒ Faux
III — { a = 1 \land b = 0 \land c = 0 \land
          k_{b,\{\sigma,\lambda\}} = 1 \wedge k_{c,\{l\}} = 1 \wedge k_{b,\{\sigma\}} = 0
            While (b < 1) With (I) Do \exists (b+, b-, c+, c-)
        \{b=1\} n'est pas un triplet valide
```

```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
 \rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
   (16 solutions)
II — WP (b+; b-, Vrai)
         ⇒ Faux (aucune solution)
III — { a = 1 \land b = 0 \land c = 0 \land
          k_{b,\{\sigma,\lambda\}} = 1 \wedge k_{c,\{l\}} = 1 \wedge k_{b,\{\sigma\}} = 0
            While (b < 1) With (I) Do \exists (b+, b-, c+, c-)
       \{b=1\} n'est pas un triplet valide
```

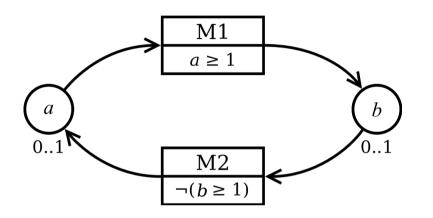
```
I — WP (b+; c+; b-, a = 1 \land b = 0 \land c = 1)
 \Rightarrow k_{b,\{\sigma,\lambda\}} = 1 \land k_{c,\{l\}} = 1 \land k_{b,\{\sigma\}} = 0
   (16 solutions)
II — WP (b+; b-, Vrai)
         ⇒ Faux (aucune solution)
III — { a = 1 \land b = 0 \land c = 0 \land
         k_{b,\{\sigma,\lambda\}} = 1 \wedge k_{c,\{l\}} = 1 \wedge k_{b,\{\sigma\}} = 0
 While (b < 1) With (I) Do \exists (b+, b-, c+, c-)
       \{b=1\} n'est pas un triplet valide
   (aucune solution)
```

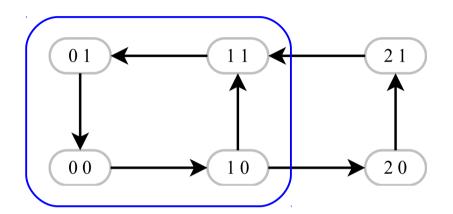
Résultats complémentaires [1]



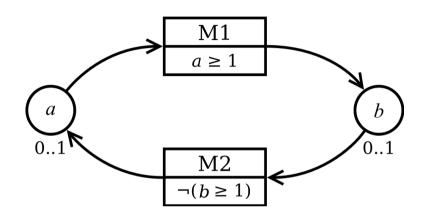


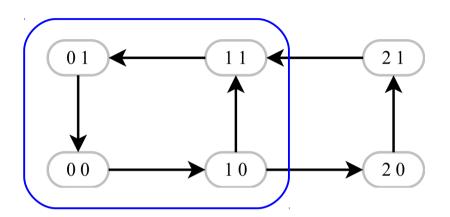
Résultats complémentaires [1]





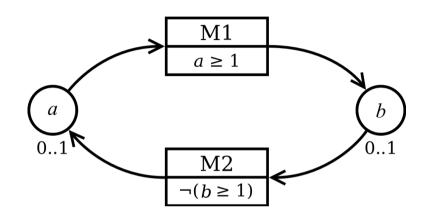
While (vrai) With (Inv) Do (a+;b+;a-;b-)

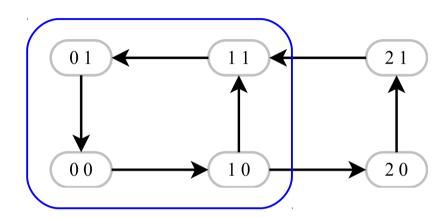




While (vrai) With (Inv) Do (a+;b+;a-;b-)

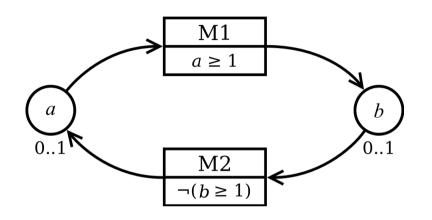
• $Inv \equiv vrai$

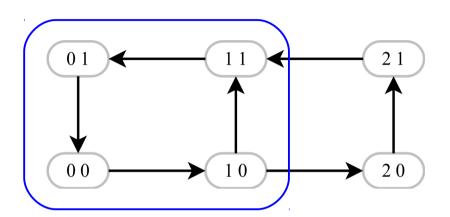




While (vrai) With (Inv) Do (a+;b+;a-;b-)

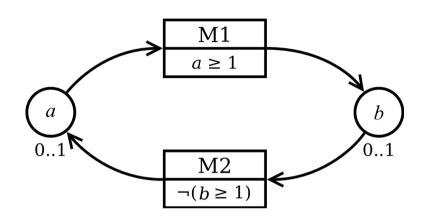
- $Inv \equiv vrai$
 - → aucune solution

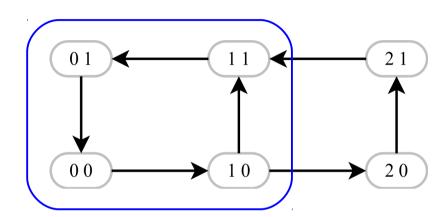




While (vrai) With (Inv) Do (a+;b+;a-;b-)

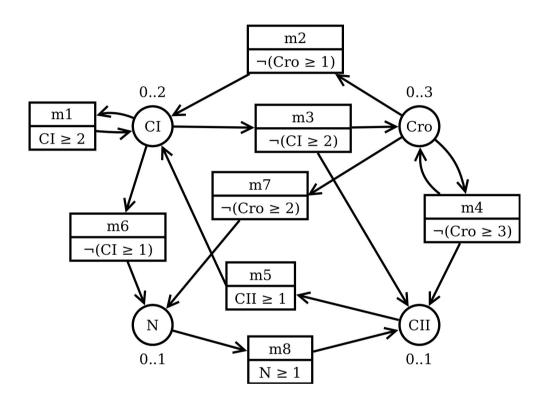
- $Inv \equiv vrai$
 - → aucune solution
- $Inv \equiv a = 0 \land b = 0$

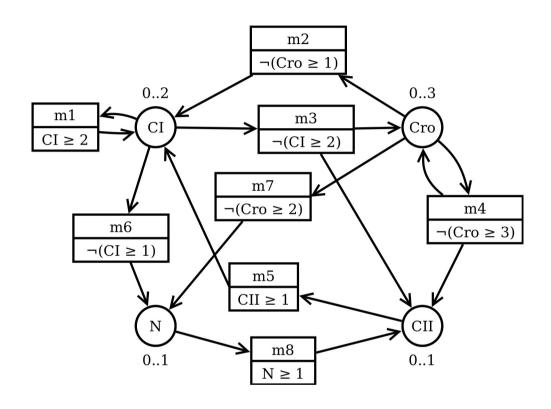




While (vrai) With (Inv) Do (a+;b+;a-;b-)

- $Inv \equiv vrai$
 - → aucune solution
- $Inv \equiv a = 0 \land b = 0$ \rightarrow 2 solutions





330 225 942 528 possibilités

→ Dépassement de capacité

Conclusion sur OCaml

- Approche différente : recherche exhaustive
- Amené à évoluer
- Des résultats sur tous les types de programmes
- Les résultats sont en accord avec les résultats obtenus sur papier
- Problème de l'explosion combinatoire

Définition des environnements

Environnement = état du réseau de régulation

Coq:

- Listes de taille variable
 - **Problème**: définition trop lâche
- Listes de taille fixée
 - Problème: complexité supplémentaire

Ocaml:

- Listes d'association
 - → Nécessitent d'être vérifiées

Théorie

Sémantique du langage impératif

Définit le comportement du langage de chemins

Coq: La sémantique est utilisée pour les preuves de complétude et correction

Problème: difficultés pour la définir

(indéterminisme)

OCaml: Pas de sémantique

Complexité et explosion combinatoire

L'utilisation de la logique de Hoare permet d'éviter une partie de la complexité

Coq: Résultats sous forme de propriétés

→ En accord avec la théorie

OCaml: Recherche exhaustive de solutions

Problème: La complexité n'est pas contournée

→ Recréer un environnement de propriétés ?

Composante temporelle

Coq: Nécessite une assurance de terminaison du programme étudié (variant décroissant) **Problème:** Très difficile à implémenter

OCaml: Possibilité de lancer une récursion infinie

- → Rapide sur des programmes simples
- → Possibilités d'amélioration

Évolutions

Améliorations supplémentaires

• Rechercher de nouveaux exemples d'application

Coq:

- Solveur pour automatiser les simplifications
- Compléter la sémantique

OCaml:

- Problèmes de complexité (solveur)
- Faire le lien avec le format GINML

Conclusion

Modèle de Thomas : Modèle puissant mais difficile à étudier pour des graphes de grande taille

Logique de Hoare : Offre une nouvelle approche pour la déduction de paramètres biologiques

Deux implémentations :

Coq: Calcul des plus faibles pré-conditions

Nombreux obstacles, incomplet

OCaml: Recherche exhaustive

Explosion combinatoire, mais résultats

Merci pour votre attention

Bibliographie • Modèle de Thomas

• [1] A. Richard, J.-P. Comet, G. Bernot:

R. Thomas' logical method.

Avril 2008. Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.

- [2] G. Bernot, J.-P. Comet, Z. Khalis: Gene regulatory networks with multiplexes. European Simulation and Modelling Conference Proceedings, pages 423–432, France, octobre 2008.
 - [3] A. Richard:

Modèle formel pour les réseaux de régulation génétique & Influence des circuits de rétroaction.

Thèse sous la direction de J.-P. Comet et G. Bernot. Sections 5.4.2-5.4.4, pages 87-95, France, septembre 2006.

Bibliographie • Logique de Hoare

• [4] C. A. R. Hoare:

An axiomatic basis for computer programming. *Communications of the ACM*, 12, pages 576–580, octobre 1969.

• [5] E. W. Dijkstra:

Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, 18:453-457, Aug. 1975.

• [6] Z. Khalis, G. Bernot, J.-P. Comet, A. Richard, O. Roux, H. Siebert: A hoare logic to identify parameter values of discrete models of gene regulatory networks.

Document de travail.