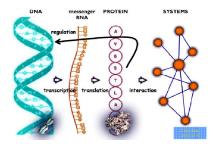
— ECML-PKDD'2012 —

Workshop on Learning and Discovery in Symbolic Systems Biology

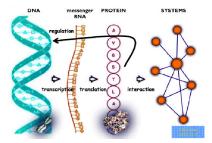
Abducing Biological Regulatory Networks from Process Hitting models

Maxime FOLSCHETTE^{1,2} maxime.folschette@irccyn.ec-nantes.fr http://www.irccyn.ec-nantes.fr/-folschet/

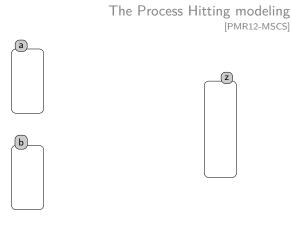
Joint work with: Loïc PAULEVÉ³, Katsumi INOUE², Morgan MAGNIN¹, Olivier ROUX¹

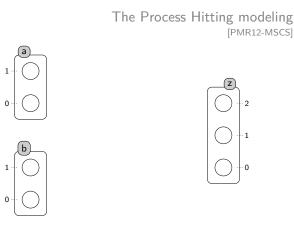

¹ MeForBio / IRCCyN / École Centrale de Nantes (Nantes, France) morgan.magnin@irccyn.ec-nantes.fr olivier.roux@irccyn.ec-nantes.fr

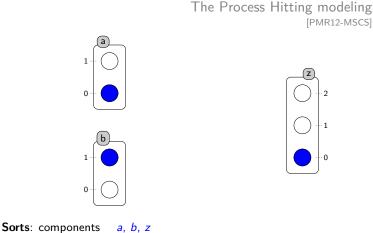
² Inoue Laboratory / NII / Sokendai University (Tokyo, Japan) ki@nii.ac.jp

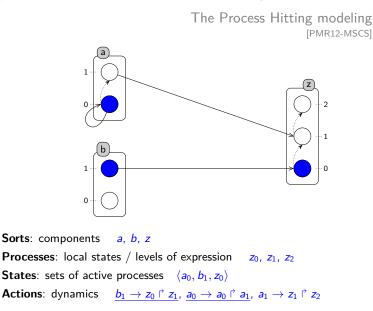

³ AMIB / LIX / École Polytechnique (Palaiseau, France) pauleve@lix.polytechnique.fr

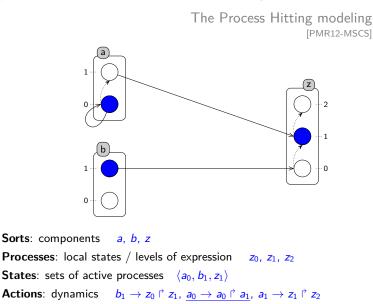
AtlanSTIC sojourn financed by NII & Centrale Initiatives

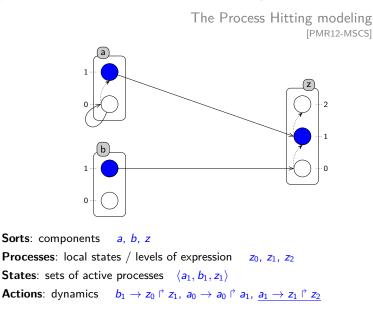

Algebraic modeling to study complex dynamical biological systems:

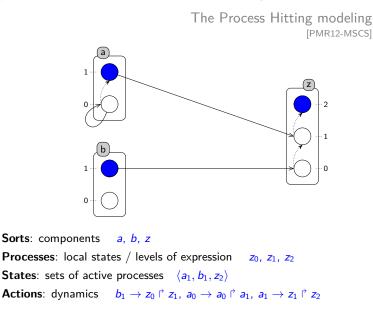

Algebraic modeling to study complex dynamical biological systems:

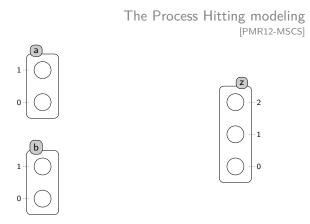

- Historical model: Biological Regulatory Network (René Thomas)
- New developed model: Process Hitting
- \Rightarrow Allow efficient translation from Process Hitting to BRN \mid \Leftarrow

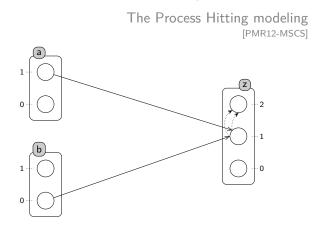

Sorts: components a, b, z

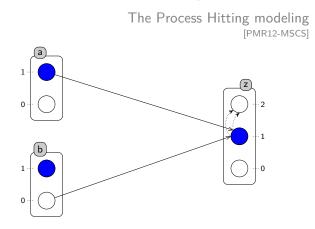


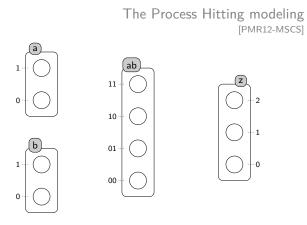

Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression z_0 , z_1 , z_2

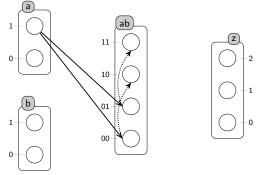


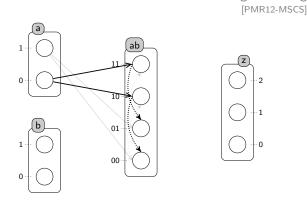

Processes: local states / levels of expression z_0, z_1, z_2 **States:** sets of active processes $\langle a_0, b_1, z_0 \rangle$



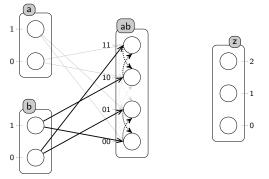


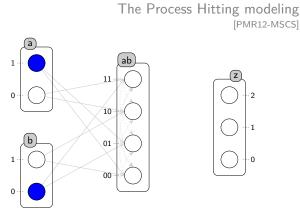

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

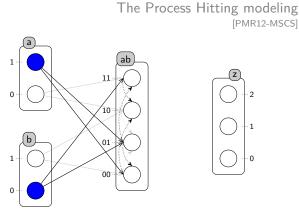

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

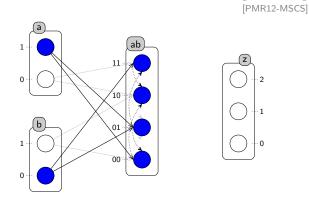


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

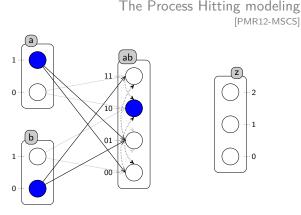




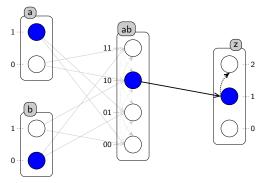

The Process Hitting modeling



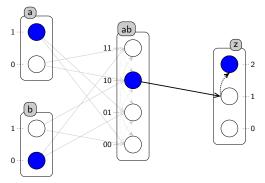
How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

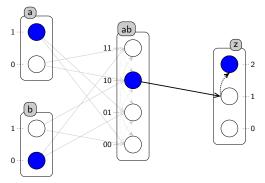


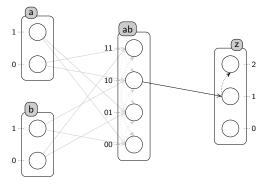
How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

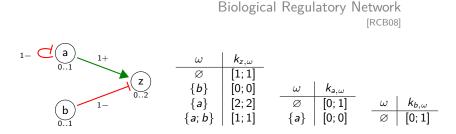

The Process Hitting modeling

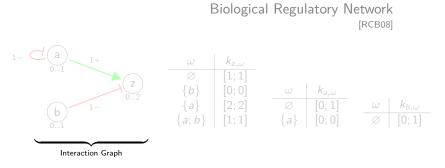
How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

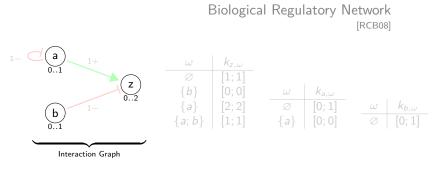

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

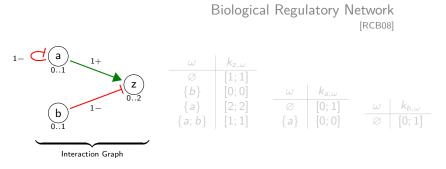

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \uparrow^2 z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift



The Process Hitting framework:


- Dynamic modeling with an atomistic point of view
- Efficient static analysis (fixed points, reachability)
- Possible extensions (stochasticity, priorities)
- Useful for the study of large biological models

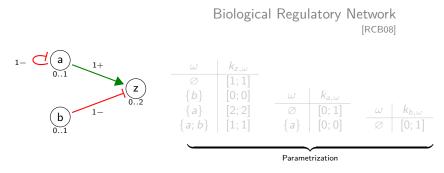
Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems


Interaction Graph: structure of the system (genes & interactions)

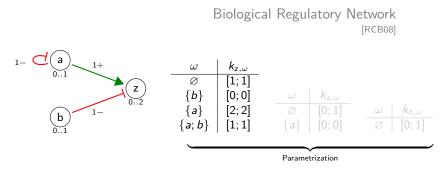
Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name *a*, *b*, *z*
- \rightarrow Possible values (levels of expression) 0..1, 0..2

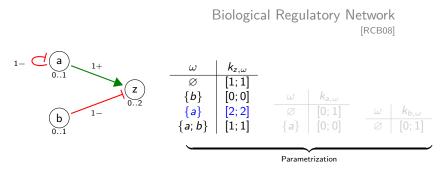

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

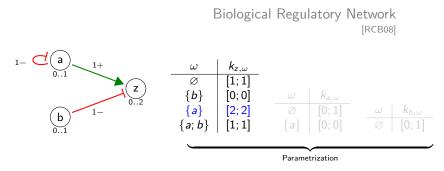

- \rightarrow Name *a*, *b*, *z*
- \rightarrow Possible values (levels of expression) 0..1, 0..2

Edges: interactions

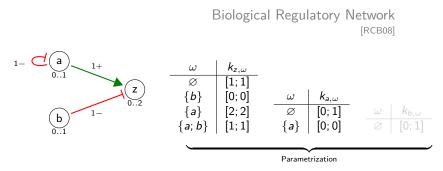
- ightarrow Type (activation or inhibition) ightarrow + / -
- \rightarrow Threshold 1


Parametrization: strength of the influences (evolution tendencies)

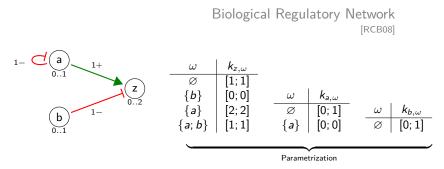
Parametrization: strength of the influences (evolution tendencies)


Maps of tendencies for each gene

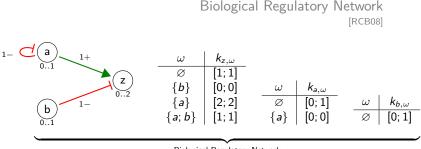
- ightarrow To any set of predecessors ω
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$


Parametrization: strength of the influences (evolution tendencies)

 $\begin{array}{l} \text{Maps of tendencies for each gene} \\ \rightarrow \text{ To any set of predecessors } \quad \omega \\ \rightarrow \text{ Corresponds a parameter } \quad k_{\mathrm{x},\omega} \\ \quad ``k_{\mathrm{z},\{a\}} = [2;2]'' \quad \text{ means: } \quad ``z \text{ tends to } [2;2] \text{ when } a \geq 1 \text{ and } b < 1'' \end{array}$


Parametrization: strength of the influences (evolution tendencies)

Maps of tendencies for each gene \rightarrow To any **set of predecessors** ω \rightarrow Corresponds a **parameter** $k_{x,\omega}$ " $k_{z,\{a\}} = [2;2]$ " means: "z tends to 2 when a = 1 and b = 0"


Parametrization: strength of the influences (evolution tendencies)

Maps of tendencies for each gene \rightarrow To any **set of predecessors** ω \rightarrow Corresponds a **parameter** $k_{x,\omega}$ " $k_{z,\{a\}} = [2;2]$ " means: "z tends to 2 when a = 1 and b = 0"

Parametrization: strength of the influences (evolution tendencies)

Maps of tendencies for each gene \rightarrow To any **set of predecessors** ω \rightarrow Corresponds a **parameter** $k_{x,\omega}$ " $k_{z,\{a\}} = [2;2]$ " means: "z tends to 2 when a = 1 and b = 0"

Biological Regulatory Network

- \rightarrow All needed information to run the model or study its dynamics:
 - Build the State Graph
 - Find reachability properties, fixed points, attractors
 - Other properties...
- ightarrow Strengths: well adapted for the study of biological systems
- → **Drawbacks**: inherent complexity; needs the full specification of cooperations

ASP Implementation

ASP: Declarative programming

Rule: $head \leftarrow body$. Fact: head. Constraint: $\leftarrow body$. Aggregate: $lower \{ atoms \} upper \leftarrow body$. Abducing BRNs from PH models o Frameworks Definitions o Answer Set Programming

ASP Implementation

ASP: Declarative programming Rule: $head \leftarrow A_1, ..., A_n, \neg A_{n+1}, ..., \neg A_m$. Fact: head.

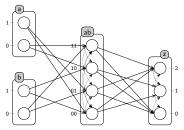
Constraint: \leftarrow body. Aggregate: lower { atoms } upper \leftarrow body. Abducing BRNs from PH models o Frameworks Definitions o Answer Set Programming

```
ASP Implementation
```

ASP: Declarative programming Rule: $head \leftarrow A_1, ..., A_n, \neg A_{n+1}, ..., \neg A_m$. Fact: head. Constraint: $\leftarrow body$. Aggregate: *lower* { *atoms* } *upper* $\leftarrow body$.

```
Representation of PH / BRNs:

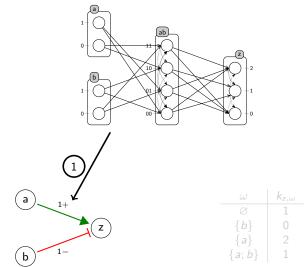
Gene: component(a, n).

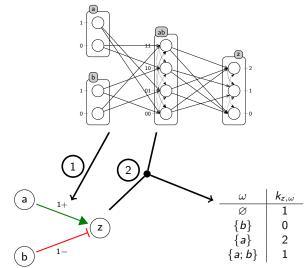

Action: action(a, i, b, j, k).

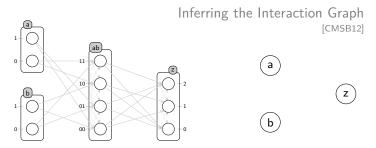
Cooperation: cooperation(c, a, i, j).

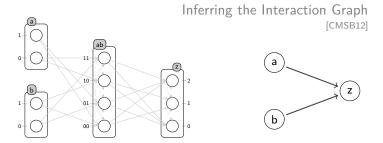
Useful rules: component_levels(X, 0..M) \leftarrow component(X, M).
```

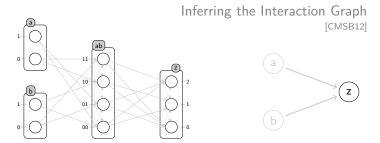
Abducing BRNs from PH models o Translating a Process Hitting into a BRN

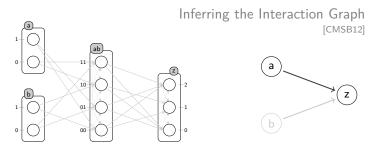

Inferring a BRN with Thomas' parameters [CMSB12]


Abducing BRNs from PH models o Translating a Process Hitting into a BRN

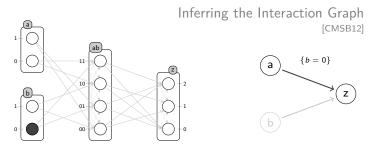

Inferring a BRN with Thomas' parameters [CMSB12]

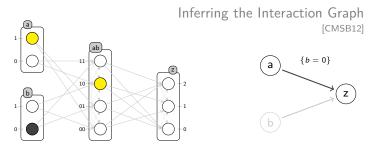

Abducing BRNs from PH models o Translating a Process Hitting into a BRN

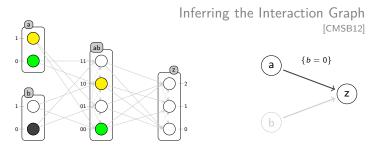

Inferring a BRN with Thomas' parameters [CMSB12]

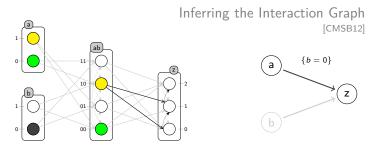


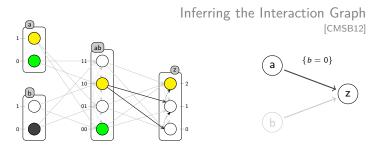
- Inputs: a Process Hitting model
- **Output:** An interaction graph with all information: \rightarrow edges, signs and thresholds
- Difficulties: Process Hitting is more atomistic than BRNs
- Idea: Exhaustive search in all possible configurations

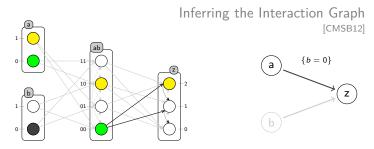


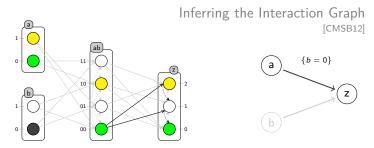

• For each gene [z]

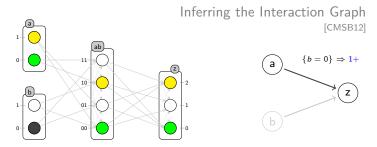

• For each gene [z], consider one possible regulator [a]

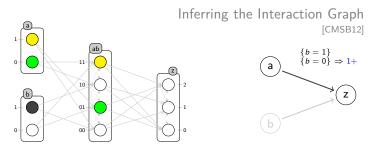

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{*b* = 0}]

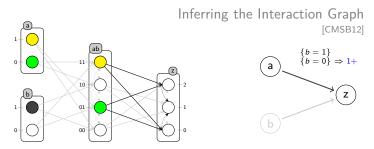

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of a

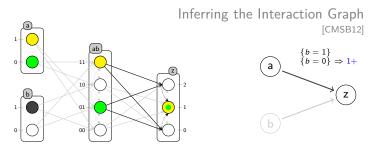

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of a

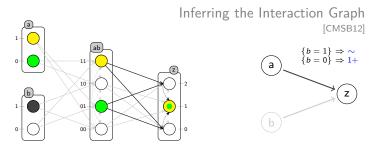

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of *a*, determine the set of **focal processes** of *z*


- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of *a*, determine the set of **focal processes** of *z*

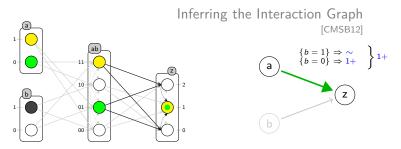

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of *a*, determine the set of **focal processes** of *z*


- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of *a*, determine the set of **focal processes** of *z*


- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 0}]
 - For each process of *a*, determine the set of **focal processes** of *z*
 - · Comparing the sets of focal processes gives the influence

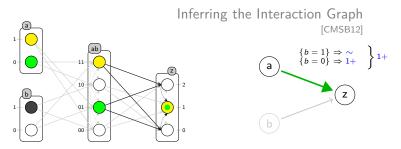

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{*b* = 1}]
 - For each process of *a*, determine the set of **focal processes** of *z*
 - · Comparing the sets of focal processes gives the influence

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{*b* = 1}]
 - For each process of *a*, determine the set of **focal processes** of *z*
 - · Comparing the sets of focal processes gives the influence



- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{*b* = 1}]
 - For each process of *a*, determine the set of **focal processes** of *z*
 - · Comparing the sets of focal processes gives the influence

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators [{b = 1}]
 - For each process of *a*, determine the set of **focal processes** of *z*
 - · Comparing the sets of focal processes gives the influence


 $\begin{array}{l} \{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1 \\ \{b=1\} \rightarrow a_0 < a_1 \text{ and } \{z_1\} = \{z_1\} \Rightarrow \text{no influence } (\sim) \end{array}$

- For each gene [z], consider one possible regulator [a]
- Consider a configuration of all other regulators [{b = 1}]
 - For each process of *a*, determine the set of **focal processes** of *z*
 - · Comparing the sets of focal processes gives the influence

 $\begin{array}{l} \{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation } (+) \text{ & threshold} = 1 \\ \{b=1\} \rightarrow a_0 < a_1 \text{ and } \{z_1\} = \{z_1\} \Rightarrow \text{no influence } (\sim) \end{array}$

• If possible, determine the general influence of a on z

• For each gene [z], consider one possible regulator [a]

- Consider a configuration of all other regulators [{b = 1}]
 - For each process of a, determine the set of focal processes of z
 - · Comparing the sets of focal processes gives the influence

 $\begin{array}{l} \{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation } (+) \text{ \& threshold} = 1 \\ \{b=1\} \rightarrow a_0 < a_1 \text{ and } \{z_1\} = \{z_1\} \Rightarrow \text{no influence } (\sim) \end{array}$

If possible, determine the general influence of a on z

Problematic cases:

- $\left. \begin{array}{l} \rightarrow \mbox{ No focal processes (cycle)} \\ \rightarrow \mbox{ Opposite influences } (+ \& -) \end{array} \right\} \Rightarrow \mbox{ Unsigned edge}$

Interaction Graph Inference

Implementation

Programming in ASP:

- Formal mathematical definitions \rightarrow ASP
- Use of aggregates (enumeration = 1 active process per sort)

Interaction Graph Inference

Implementation

Programming in ASP:

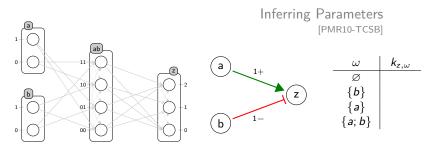
- Formal mathematical definitions \rightarrow ASP
- Use of aggregates (enumeration = 1 active process per sort)

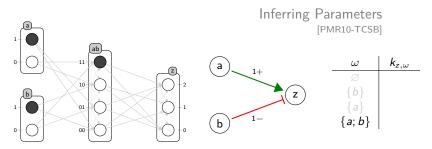
Calling ASP:

- Pint (existing OCaml library) to read Process Hitting models Free library + examples: http://processhitting.wordpress.com/
- **OCaml** to translate these models to an ASP description and parse the results
- Clingo to solve the description with the adequate program

```
Interaction Graph Inference
Results
```

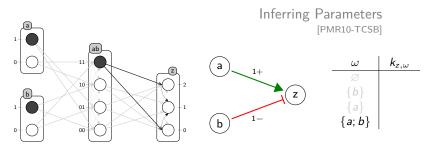
Results: Very fast execution (personal laptop, 1.83GHz dual-core)

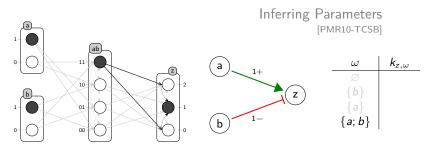

< 1s for 20 & 40 genes models [EGFR20 & TCRSIG40]


 $\simeq 13s$ for a 94 genes model [TCRSIG94]

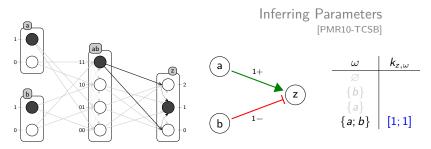
 \simeq 4min for a 104 genes model [EGFR104]

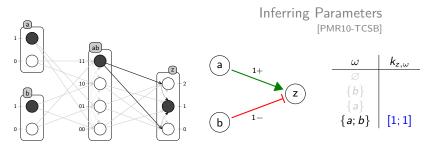
Model name	Sorts	Cooperative sorts	Processes	Actions
[EGFR20]	20	22	152	399
[TCRSIG40]	40	14	156	301
[TCRSIG94]	94	39	448	1124
[EGFR104]	104	89	748	2356


- [EGFR20]: Epidermal Growth Factor Receptor, by Özgür Sahin et al.
- [EGFR104]: Epidermal Growth Factor Receptor, by Regina Samaga et al.
- [TCRSIG40]: T-Cell Receptor Signaling, by Steffen Klamt et al.
- [TCRSIG94]: T-Cell Receptor Signaling, by Julio Saez-Rodriguez et al.



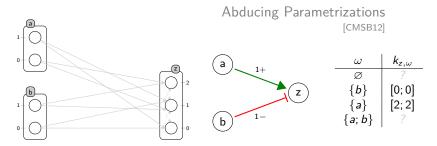
Inputs: The Process Hitting model and the related Interaction Graph **Output:** The Parametrization related to the Interaction Graph


• For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$

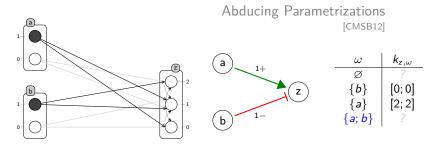

- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of focal processes of the gene

- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of focal processes of the gene $[\{z_1\}]$

- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of focal processes of the gene [{z₁}]
- Under some conditions, this set is the parameter: $k_{z,\{a,b\}} = [1;1]$

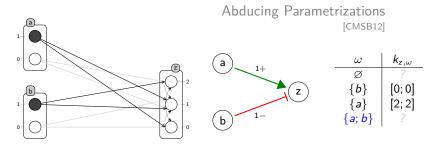


Inputs: The Process Hitting model and the related Interaction Graph **Output:** The Parametrization related to the Interaction Graph


- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of **focal processes** of the gene [{z₁}]
- Under some <u>conditions</u>, this set is the parameter: $k_{z,\{a,b\}} = [1;1]$

Problematic cases:

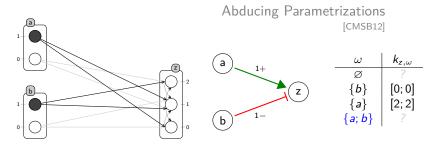
- ightarrow Behavior cannot be represented as a BRN
- ightarrow Lack of cooperation (no focal processes)



Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics

• Incomplete cooperations may lead to a partial Parametrization $[\omega = \{a, b\}]$



Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega = \{a, b\}]$
- Ambiguous cases may represent several dynamics

 $[k_{z,\{a,b\}} = [0;0]? \ [0;1]? \ [1;1]? \ [1;2]? \ [2;2]? \ [0;2]?]$

Abducing BRNs from PH models o Translating a Process Hitting into a BRN o Parametrization Inference

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega = \{a, b\}]$
- Ambiguous cases may represent several dynamics

 $[k_{z,\{a,b\}} = [0;0]? \ [0;1]? \ [1;1]? \ [1;2]? \ [2;2]? \ [0;2]?]$

- \rightarrow Enumeration regarding:
 - Biological constraints
 - The dynamics of the Process Hitting

Abducing BRNs from PH models o Translating a Process Hitting into a BRN o Parametrization Inference

Abducing Parametrizations

Implementation

Parameters definitions:

One identifier for each parameter: param_label(a, i)

Useful rules:

less_active(X, P, Q) $\leftarrow K_{X,P}$ has less activators than $K_{X,Q}$ *param_inf*(X, P, Q) $\leftarrow K_{X,P} \preccurlyeq K_{X,Q}$

Abducing BRNs from PH models \circ Translating a Process Hitting into a BRN \circ Parametrization Inference

Abducing Parametrizations

Implementation

Parameters definitions:

One identifier for each parameter: *param_label(a, i)*

Useful rules:

less_active(X, P, Q) $\leftarrow K_{X,P}$ has less activators than $K_{X,Q}$ *param_inf*(X, P, Q) $\leftarrow K_{X,P} \preccurlyeq K_{X,Q}$

Parameters enumeration uses cardinalities:

1 { param(X, P, I) : $component_levels(X, I)$ } $\leftarrow param_label(X, P)$. [X: component; P: parameter label; I: parameter value] Abducing BRNs from PH models \circ Translating a Process Hitting into a BRN \circ Parametrization Inference

Abducing Parametrizations

Implementation

Parameters definitions:

One identifier for each parameter: *param_label(a, i)*

Useful rules:

less_active(X, P, Q) $\leftarrow K_{X,P}$ has less activators than $K_{X,Q}$ *param_inf*(X, P, Q) $\leftarrow K_{X,P} \preccurlyeq K_{X,Q}$

Parameters enumeration uses cardinalities:

1 { param(X, P, I) : $component_levels(X, I)$ } $\leftarrow param_label(X, P)$. [X: component; P: parameter label; I: parameter value]

Parametrizations filtering uses constraints: $\leftarrow less_active(X, P, Q), \neg param_inf(X, P, Q).$ [X: component; P, Q: parameter labels]

Maxime FOLSCHETTE

Abducing BRNs from PH models o Translating a Process Hitting into a BRN o Parametrization Inference

Parametrization Inference Results

Two steps:

- Parameters inference (partial)
- Parametrization abduction (total)

Abducing BRNs from PH models \circ Translating a Process Hitting into a BRN \circ Parametrization Inference

Parametrization Inference

Two steps:

- Parameters inference (partial)
- Parametrization abduction (total)

Results:

• Very fast execution for parameters inference

< 1s for 20 & 40 genes models [EGFR20 & TCRSIG40]

Parametrization abduction

After one cooperation removal:

 \simeq 4s to find 42 admissible Parametrizations [TCRSIG40]

 \simeq 20s to find 129 admissible Parametrizations [EGFR20]

ASP is convenient to handle enumeration (cardinalities) and filter only admissible answers (constraints)

Summary & Future work

- Inference of the complete Interaction Graph
 - \rightarrow Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
 - \rightarrow Exhaustive approach to find the necessary parameters
- Abduce all full & admissible Parametrizations
 - \rightarrow Exhaustive approach to find only relevant answers
- Complexity: linear in the number of genes,
 - exponential in the number of regulators of one gene

Summary & Future work

- Inference of the complete Interaction Graph
 - \rightarrow Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
 - \rightarrow Exhaustive approach to find the necessary parameters
- Abduce all full & admissible Parametrizations
 - \rightarrow Exhaustive approach to find only relevant answers
- Complexity: linear in the number of genes, exponential in the number of regulators of one gene
- Concretize into more expressive BRN representations
 - \rightarrow Tackle with **unsigned edges** (problematic cases)
 - \rightarrow Use multiplexes to decrease the size of Parametrizations
- Use projections to remove cooperative sorts
 - \rightarrow Make actions independent
 - \rightarrow Drop inference complexity?

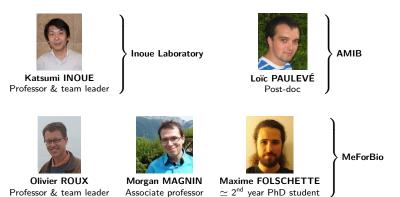
Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas

- \rightarrow New formal link between the two models
- \rightarrow More **visibility** to the Process Hitting

Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas


- \rightarrow New formal link between the two models
- \rightarrow More visibility to the Process Hitting

Using ASP

- \rightarrow Tackles with complexity/combinatorial explosion
- \rightarrow Allows efficient exhaustive search & enumeration

A multi-team topic

Inoue Laboratory (NII, Sokendai): Constraint Programming, Systems Biology **MeForBio** (IRCCyN, ÉCN): Formal Methods for Bioinformatics **AMIB** (LIX, Polytechnique): Algorithms and Models for Integrative Biology

Bibliography

[Paulevé11] Loïc Paulevé. PhD thesis: Modélisation, Simulation et Vérification des Grands Réseaux de Régulation Biologique, October 2011, Nantes, France

- [PRM10-TCSB] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π -calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, volume 6575 of Lecture Notes in Computer Science, 171-191. Springer Berlin/Heidelberg, 2011.
- [PMR12-MSCS] Loïc Paulevé, Morgan Magnin, and Olivier Roux. *Static analysis of biological regulatory networks dynamics using abstract interpretation*. Mathematical Structures in Computer Science, in press, 2012.
- [RCB08] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. R. Thomas' logical method, 2008. Invited at Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.
- [CMSB12] Maxime Folschette, Loïc Paulevé, Katsumi Inoue, Morgan Magnin, and Olivier Roux. Concretizing the Process Hitting into Biological Regulatory Networks. In: Computational Methods in Systems Biology, Springer, 2012.

Thank you