— KUBIC-NII Joint Seminar on Bioinformatics 2012 —

Translating Process Hitting models to Thomas' modeling with ASP

Maxime FOLSCHETTE^{1,2}
maxime.folschette@irccyn.ec-nantes.fr
http://www.irccyn.ec-nantes.fr/-folschet/

Joint work with: Loïc PAULEVÉ³, Katsumi INOUE², Morgan MAGNIN¹, Olivier ROUX¹

² Inoue Laboratory / National Institute of Informatics (Tokyo, Japan) ki@nii.ac.jp

³ AMIB team / LIX / École Polytechnique (Palaiseau, France) pauleve@lix.polytechnique.fr

AtlanSTIC sojourn financed by NII & Centrale Initiatives

A multi-team topic

Inoue Laboratory (NII): Constraint Programming, Systems Biology MeForBio (IRCCyN, ÉCN): Formal Methods for Bioinformatics AMIB (LIX, Polytechnique): Algorithms and Models for Integrative Biology

Katsumi INOUE
Professor & team leader

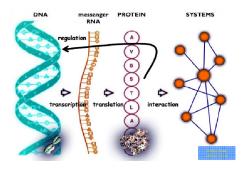
Inoue Laboratory

Loïc PAULEVÉ Post-doc

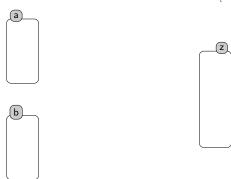
AMIB

Olivier ROUX
Professor & team leader

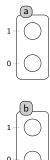
Morgan MAGNIN Associate professor

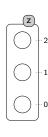


Maxime FOLSCHETTE 1st year PhD student


MeForBio

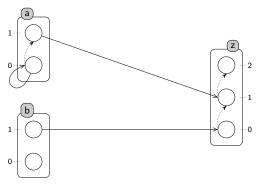
Context and Aims


Algebraic modeling to study complex dynamical biological systems:



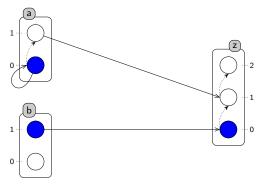
- Historical model: René Thomas' modeling
- New developed model: Process Hitting
- → Allow efficient translation between models

Sorts: components a, b, z



Sorts: components a, b, z

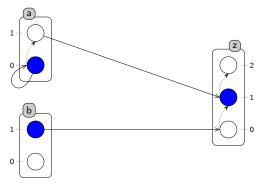
Processes: local states / levels of expression z₀, z₁, z₂


The Process Hitting modeling [PMR12-MSCS]

Sorts: components a, b, z

Processes: local states / levels of expression z₀, z₁, z₂

Actions: dynamics $b_1 o z_0
ightharpoonup z_1$, $a_0 o a_0
ightharpoonup a_1$

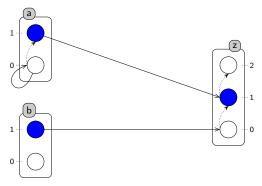


Sorts: components a, b, z

Processes: local states / levels of expression z_0 , z_1 , z_2

Actions: dynamics $b_1 o z_0
ightharpoonup z_1$, $a_0 o a_0
ightharpoonup a_1$

States: sets of active processes $\langle a_0, b_1, z_0 \rangle$

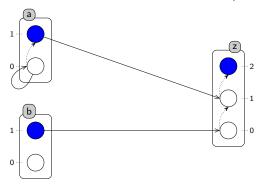


Sorts: components a, b, z

Processes: local states / levels of expression z₀, z₁, z₂

Actions: dynamics $b_1 o z_0
ightharpoonup z_1$, $a_0 o a_0
ightharpoonup a_1$

States: sets of active processes $\langle a_0, b_1, z_1 \rangle$

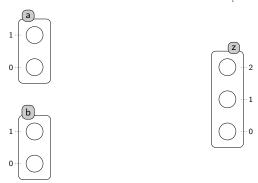

Sorts: components a, b, z

Processes: local states / levels of expression z₀, z₁, z₂

Actions: dynamics $b_1 o z_0
ightharpoonup z_1$, $a_0 o a_0
ightharpoonup a_1$

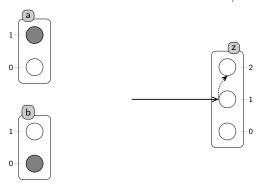
States: sets of active processes $\langle a_1, b_1, z_1 \rangle$

The Process Hitting modeling [PMR12-MSCS]

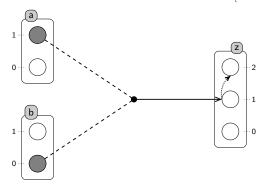


Sorts: components a, b, z

Processes: local states / levels of expression z₀, z₁, z₂

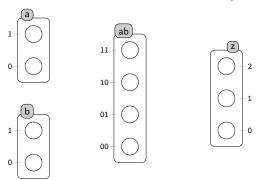

Actions: dynamics $b_1 o z_0
ightharpoonup z_1$, $a_0 o a_0
ightharpoonup a_1$

States: sets of active processes $\langle a_1, b_1, z_2 \rangle$

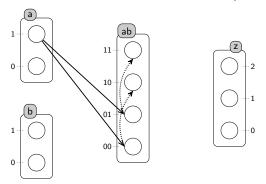


How to introduce some cooperation between sorts?

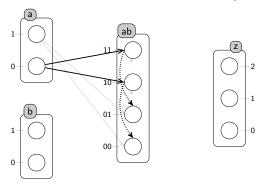
The Process Hitting modeling [PMR12-MSCS]

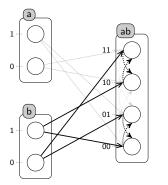


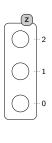
How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$



How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

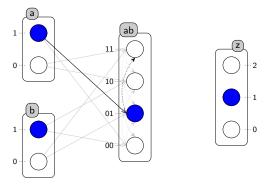

The Process Hitting modeling [PMR12-MSCS]

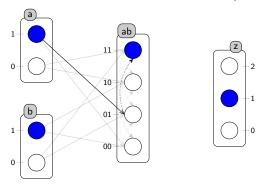

The Process Hitting modeling [PMR12-MSCS]

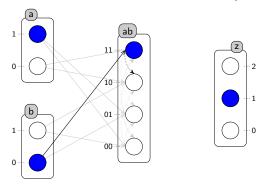


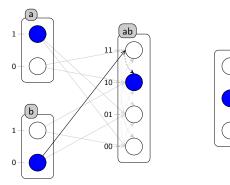
The Process Hitting modeling [PMR12-MSCS]

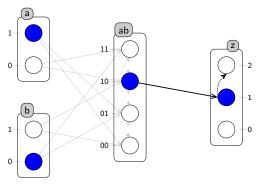
The Process Hitting modeling [PMR12-MSCS]

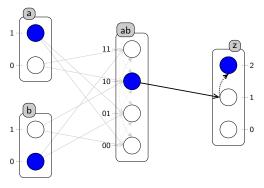





How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$ Solution: create a cooperative sort


$$a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$$

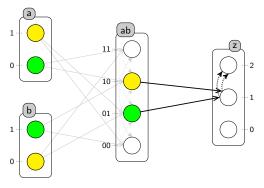

5/16



Solution: create a **cooperative sort** ab

We can express any kind of cooperation $a_1 \wedge b_0$

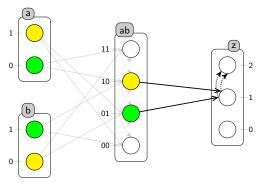
5/16



How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

Solution: create a cooperative sort

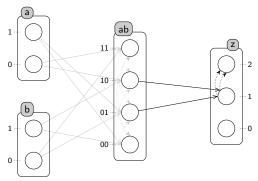
We can express any kind of cooperation


 $a_1 \wedge b_0$

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

Solution: create a cooperative sort

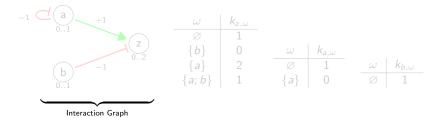
We can express any kind of cooperation $a_1 \wedge b_0$, $a_1 \oplus b_1$

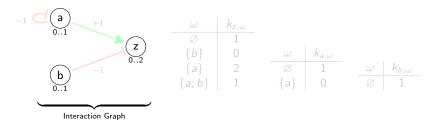


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Solution: create a cooperative sort

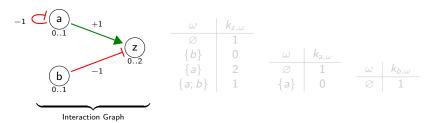
We can express any kind of cooperation $a_1 \wedge b_0$, $a_1 \oplus b_1$


Drawbacks: complexity, temporal shift


The Process Hitting framework:

- Dynamic modeling with an atomistic point of view
- Efficient static analysis (fixes points, reachability)
- Possible extensions (stochasticity, priorities)
- Useful for the study of large bioinformatics systems

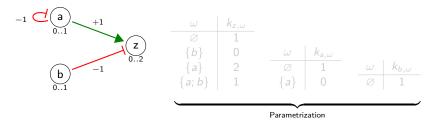
Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems


Interaction Graph: structure of the system (genes & interactions)

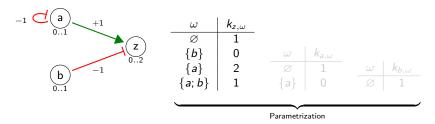
Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name a, b, z
- \rightarrow Possible values (levels of expression) 0..1, 0..2

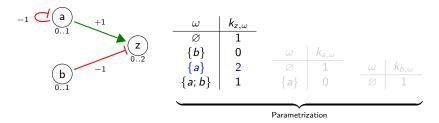

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

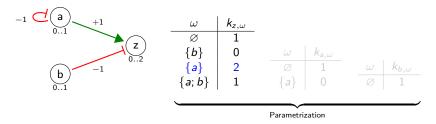

- \rightarrow Name a, b, z
- \rightarrow Possible values (levels of expression) 0..1, 0..2

Edges: interactions

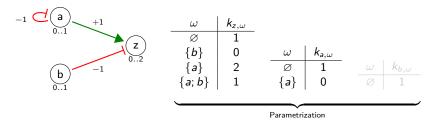
- \rightarrow Type (activation or inhibition) + / -
- ightarrow Threshold



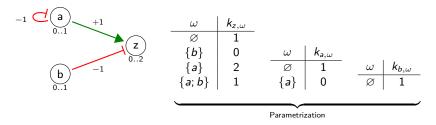
Parametrization: strength of the influences (evolution tendencies)


Parametrization: strength of the influences (evolution tendencies)

- ightarrow To any set of predecessors ightharpoonup
- ightarrow Corresponds a **parameter** $k_{x,\omega}$

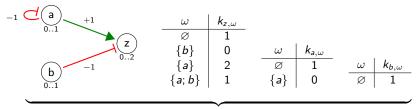

Parametrization: strength of the influences (evolution tendencies)

- ightarrow To any set of predecessors
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$
- " $k_{z,\{a\}}=2$ " means: "z tends to 2 when $a\geq 1$ and b<1"


Parametrization: strength of the influences (evolution tendencies)

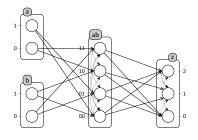
- ightarrow To any set of predecessors
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$
- " $k_{z,\{a\}}=2$ " means: "z tends to 2 when a=1 and b=0"

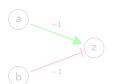
Parametrization: strength of the influences (evolution tendencies)


- ightarrow To any set of predecessors
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$
- " $k_{z,\{a\}}=2$ " means: "z tends to 2 when a=1 and b=0"

Parametrization: strength of the influences (evolution tendencies)

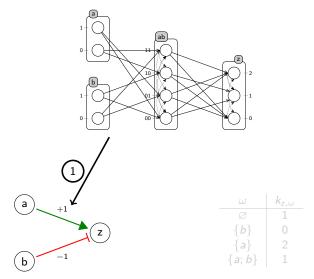
- ightarrow To any set of predecessors
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$
- " $k_{z,\{a\}}=2$ " means: "z tends to 2 when a=1 and b=0"

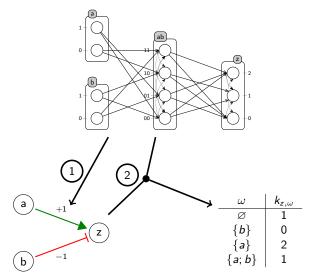

René Thomas' Modeling [RCB08]

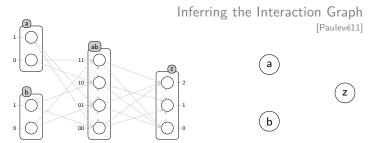


Biological Regulatory Network

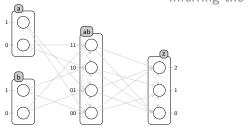
- \rightarrow All needed information to run the model or study its dynamics:
 - Build the State Graph
 - Find reachability properties
 - Find fixed points or attractors
 - Other properties...

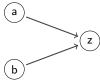

Inferring Thomas' Model

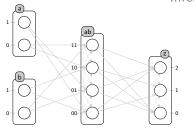


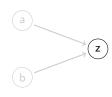

ω	$k_{z,\omega}$
Ø	1
{ <i>b</i> }	0
{a}	2
$\{a; b\}$	1

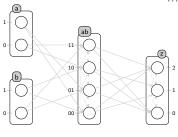
Inferring Thomas' Model

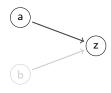

Inferring Thomas' Model

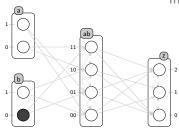


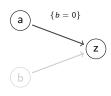

- Inputs: a Process Hitting model and a list of genes

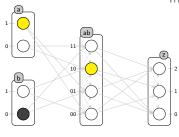

 → distinguish cooperative sorts from sorts modeling real genes
- Output: An interaction graph with all information:
 - ightarrow edges, signs and thresholds
- Difficulties: The Process Hitting is more atomistic than Thomas' modeling
- Idea: Enumeration of the possible configurations

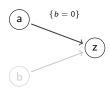


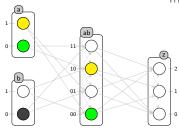

• Determine possible influences $(a \rightarrow z, b \rightarrow z)$

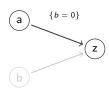


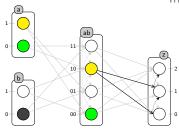

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z]

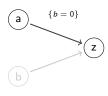


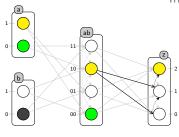

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]

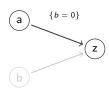


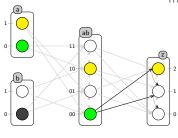

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$

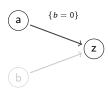


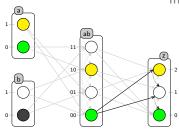

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts

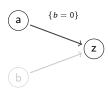


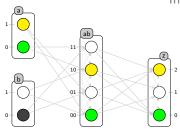

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts

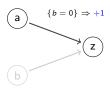


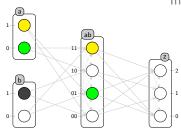

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z

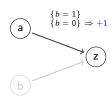



- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z

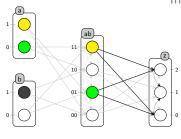


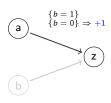

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z


- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z

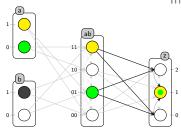


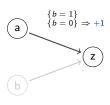
- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=0\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z
 - Comparing the sets of focal processes gives the influence


$$\{b=0\}
ightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$

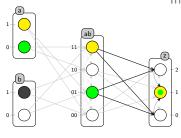


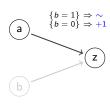
- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=1\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z
 - · Comparing the sets of focal processes gives the influence


$$\{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$

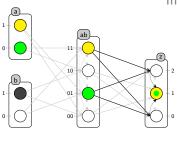


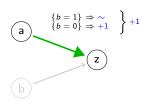
- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=1\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z
 - Comparing the sets of focal processes gives the influence


$$\{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$



- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=1\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z
 - · Comparing the sets of focal processes gives the influence


$$\{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$



- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=1\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z
 - · Comparing the sets of focal processes gives the influence

$$\{b=0\} \rightarrow a_0 < a_1$$
 and $\{z_0\} \preccurlyeq \{z_2\} \Rightarrow$ activation (+) & threshold = 1 $\{b=1\} \rightarrow a_0 < a_1$ and $\{z_1\} = \{z_1\} \Rightarrow$ inconclusive (\sim)

- Determine possible influences $(a \rightarrow z, b \rightarrow z)$
- For each gene [z], consider one predecessor [a]
- Consider a configuration of all other predecessors $[\{b=1\}]$
 - For each process of a:
 - Inherit the current configuration to the cooperative sorts
 - Determine the set of focal (i.e. stable) processes of z
 - · Comparing the sets of focal processes gives the influence

$$\{b=0\} \rightarrow a_0 < a_1$$
 and $\{z_0\} \preccurlyeq \{z_2\} \Rightarrow$ activation (+) & threshold = 1 $\{b=1\} \rightarrow a_0 < a_1$ and $\{z_1\} = \{z_1\} \Rightarrow$ inconclusive (\sim)

If possible, determine the general influence of a on z

Inferring the Interaction Graph Implementation & Results

Programming in ASP:

- Formal mathematical definitions → ASP
- Use of aggregates (enumeration = 1 active process per sort)

Inferring the Interaction Graph Implementation & Results

Programming in ASP:

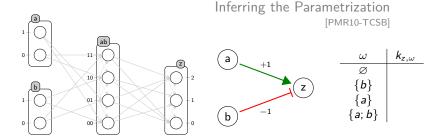
- Formal mathematical definitions → ASP
- Use of aggregates (enumeration = 1 active process per sort)

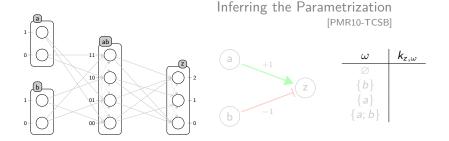
Calling ASP:

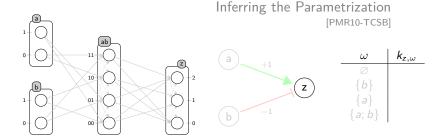
- Pint (existing OCaml library) to read Process Hitting models
 [http://processhitting.wordpress.com/]
- OCaml to translate these models to an ASP description
- Clingo to solve the description with the adequate program

Inferring the Interaction Graph Implementation & Results

Programming in ASP:

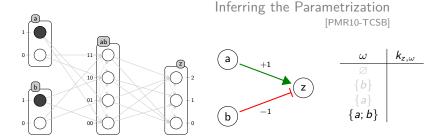

- Formal mathematical definitions → ASP
- Use of aggregates (enumeration = 1 active process per sort)

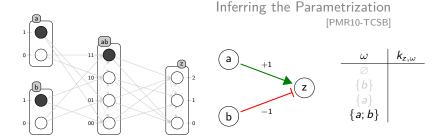

Calling ASP:


- Pint (existing OCaml library) to read Process Hitting models
 [http://processhitting.wordpress.com/]
- OCaml to translate these models to an ASP description
- Clingo to solve the description with the adequate program

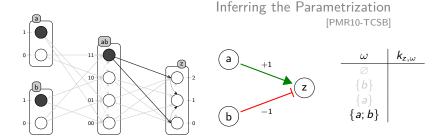
Results:

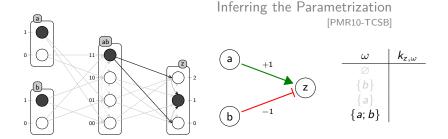
- Fast execution for "well-shaped" models (execution time < 1s for a 40 genes model)
- Very slow execution for "bad-shaped" models (with too many predecessors for some genes)

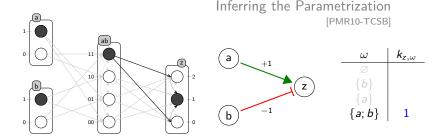




Similar approach than Interaction Graph Inference (focal processes)


• For each gene [z]


- For each gene [z]
- For each configuration of active predecessors $[\omega = \{a; b\}]$


- For each gene [z]
- For each configuration of active predecessors $[\omega = \{a; b\}]$

- For each gene [z]
- For each configuration of active predecessors $[\omega = \{a; b\}]$
 - Find the set of focal processes of the gene $[\{z_1\}]$

- For each gene [z]
- For each configuration of active predecessors $[\omega = \{a; b\}]$
 - Find the set of focal processes of the gene $[\{z_1\}]$

- For each gene [z]
- For each configuration of active predecessors $[\omega = \{a; b\}]$
 - Find the set of focal processes of the gene $[\{z_1\}]$
 - If this set respects some conditions (attractor, interval)
 - \rightarrow Then we have found the parameter $\Rightarrow k_{z,\{a,b\}} = 1$

 $Translating\ Process\ Hitting\ to\ Thomas -- 2012/04/26:\ Translating\ a\ Process\ Hitting\ Model\ to\ Thomas'\ Modeling$

Inferring the Parametrization Implementation & Results

Same implementation scheme than Interaction Graph Inference: OCaml translation (with Pint) to ASP and ASP execution

Inferring the Parametrization Implementation & Results

Same implementation scheme than Interaction Graph Inference: OCaml translation (with Pint) to ASP and ASP execution

Results:

- Very fast execution
- May give incomplete results for incomplete models
 - \rightarrow Give all possible parametrizations?

Work Summary

- Inference of the complete Interaction Graph
 - \rightarrow Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
 - \rightarrow Exhaustive approach to find the necessary parameters
- Rules to auto-detect the cooperative sorts
 - → The Process Hitting model is the only input

Future Work

- Work on complete Parametrizations search
 - → List all compatible parametrizations given some constraints
- Work on the Projections Approach
 - → Idea: model reduction (cooperative sorts removal)
 - → Alternative to the exhaustive approach
 - → Lower complexity?

Conclusion

Existing translation: René Thomas \leadsto Process Hitting

New translation: Process Hitting → René Thomas

- → New **formal link** between the two models
- \rightarrow More visibility to the Process Hitting

Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas

- → New formal link between the two models
- → More **visibility** to the Process Hitting

Using ASP

- → Tackles with complexity/combinatorial explosion
- → Allows **exhaustive** search & enumeration

Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas

- → New formal link between the two models
- → More **visibility** to the Process Hitting

Using ASP

- → Tackles with complexity/combinatorial explosion
- → Allows **exhaustive** search & enumeration

Thank you

Bibliography

- [Paulevé11] PhD thesis: Modélisation, Simulation et Vérification des Grands Réseaux de Régulation Biologique, October 2011, Nantes, France
- [PRM10-TCSB] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors, Transactions on Computational Systems Biology XIII, volume 6575 of Lecture Notes in Computer Science, 171-191. Springer Berlin/Heidelberg, 2011.
- [PMR12-MSCS] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science, in press, 2012.
- [RCB08] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. R. Thomas' logical method, Apr. 2008. Invited at Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.