Modeling and Analysis of Large Biological Regulatory Networks thanks to the "Process Hitting" Framework

Maxime FOLSCHETTE¹ maxime.folschette@irccyn.ec-nantes.fr http://www.irccyn.ec-nantes.fr/~folschet/

Joint work with: Olivier ROUX¹, Morgan MAGNIN¹, Loïc PAULEVÉ²

¹: MeForBio team / IRCCyN / École Centrale de Nantes (Nantes, France) morgan.magnin@irccyn.ec-nantes.fr olivier.roux@irccyn.ec-nantes.fr

²: AMIB team / LIX / École Polytechnique (Palaiseau, France) pauleve@lix.polytechnique.fr

AtlanSTIC sojourn financed by NII & Centrale Initiatives

Modeling and Analysis of Large BRN using the Process Hitting: Team & Topic Presentation

The MeForBio Team

MeForBio (team): formal methods for bioinformatics IRCCyN (laboratory): domains related to computer science École Centrale de Nantes (engineer school)

Olivier ROUX Professor & team leader

Morgan MAGNIN Associate professor

Philippe BORDRON Post-doc

Julien GRAS Research engineer

Maxime FOLSCHETTE PhD student

Loïc PAULEVÉ Post-doc at LIX former member of MeForBio

The MeForBio Team

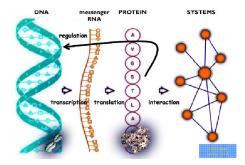
Team activities (computer science / bioinformatics):

- Using formal & algebraic models to study the dynamics of biological systems
- Projects: CirClock (CNRS), BioTempo (French agency ANR), BIL (region)
- Collaborations: several projects with German teams, Microsoft Research (Cambridge)

Loïc PAULEVÉ's PhD thesis: [Paulevé11]

- Modeling, Simulation and Checking of Large Biological Regularoty Networks with Process Hitting
 - ightarrow Discrete approach, chronological data

My PhD subject:


• Adding a temporal dimension to the Process Hitting by introducing chronometric data

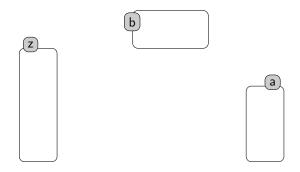
 \rightarrow Discrete approach, continuous data/constraints

Modeling and Analysis of Large BRN using the Process Hitting: Team & Topic Presentation

Context and Aims

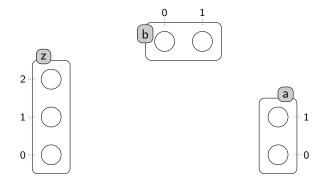
Algebraic modeling to study complex dynamical biological systems:

Modeling and Analysis of Large BRN using the Process Hitting: Team & Topic Presentation

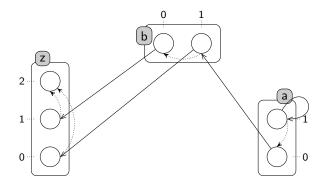

Context and Aims

Algebraic modeling to study complex dynamical biological systems:

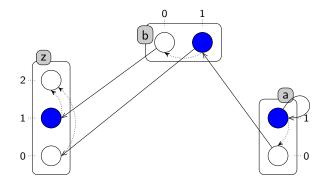
Some related works:


- Timed Petri Nets [Heiner, ...]
- Continuous-Time Markov Chains (PRISM) [Kwiatkowska, Parker, ...]
- Biocham [Fages]
- Kappa [Danos, Feret, Fontana, Harmer, Krivine]
- Timed Automata [Siebert, Bockmayr, ...]
- Linear Hybrid Automata [Ahmad, Roux]
- Hoare logic [Bernot, Comet, Roux]
- ...
- \rightarrow How to cope with very large systems & combinatorial explosion?

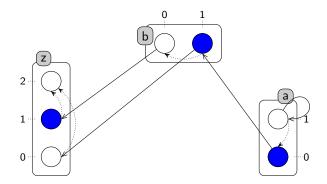
The Process Hitting Framework


Sorts: components *a*, *b*, *z*

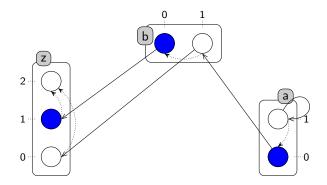
The Process Hitting Framework


Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression 0, 1, 2

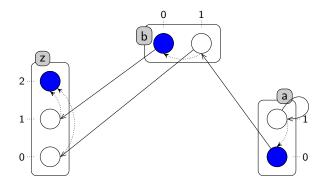
The Process Hitting Framework


Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression 0, 1, 2 **Actions**: dynamics $a_0 \rightarrow b_1 \uparrow b_0$

The Process Hitting Framework


Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression 0, 1, 2 **Actions**: dynamics $a_0 \rightarrow b_1 \stackrel{r}{\vdash} b_0$ **States**: sets of active processes $\langle a_1, b_1, z_1 \rangle$

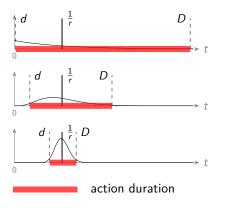
The Process Hitting Framework


Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression 0, 1, 2 **Actions**: dynamics $a_0 \rightarrow b_1 \stackrel{r}{\mapsto} b_0$ **States**: sets of active processes $\langle a_0, b_1, z_1 \rangle$

The Process Hitting Framework

Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression 0, 1, 2 **Actions**: dynamics $a_0 \rightarrow b_1 \stackrel{r}{\rightarrow} b_0$ **States**: sets of active processes $\langle a_0, b_0, z_1 \rangle$

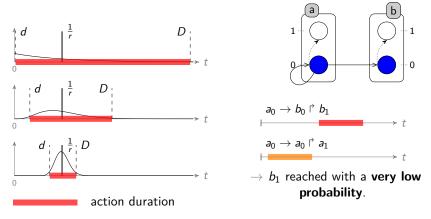
The Process Hitting Framework


Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression 0, 1, 2 **Actions**: dynamics $a_0 \rightarrow b_1 \uparrow b_0$ **States**: sets of active processes $\langle a_0, b_0, z_2 \rangle$

Stochastic Features [PMR10-TSE]

- Introduces time features
- Parameters: either (*r*, *sa*), or the **firing interval** [*d*; *D*].
 - \rightarrow Tests by simulation

Stochastic Features [PMR10-TSE]


- Introduces time features
- Parameters: either (r, sa), or the firing interval [d; D].
 - \rightarrow Tests by simulation

Stochastic Features [PMR10-TSE]

- Introduces time features
- Parameters: either (r, sa), or the firing interval [d; D].

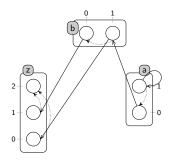
 \rightarrow Tests by simulation

Static Analysis

Problem: the simulation still faces combinatorial explosion

Idea: study the model without running it

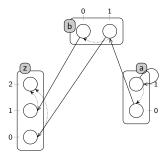
- ightarrow avoiding combinatorial explosion
- \rightarrow focusing on the interesting parts of the model

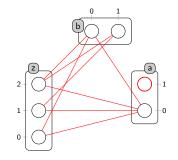

Two main results:

- Fixed points
 - ightarrow Deadlocks
- Process reachability
 - \rightarrow From a state where we have processes p_1 , p_2 , ... can we reach the process q_1 , then q_2 , then ... ?

Static Analysis: Fixed Points [PRM10-TCSB]

Fixed point = state where no action can be fired

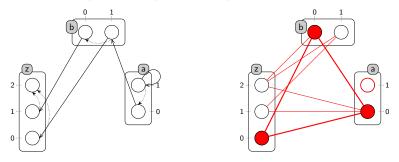

 \rightarrow avoid couples of processes bounded by an action



Static Analysis: Fixed Points [PRM10-TCSB]

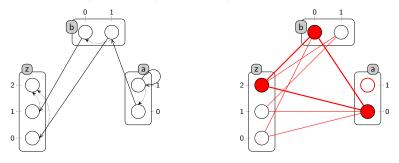
Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph



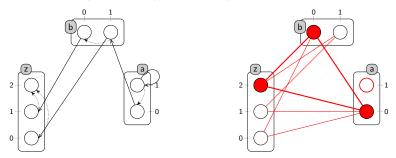
Static Analysis: Fixed Points [PRM10-TCSB]

Fixed point = state where no action can be fired

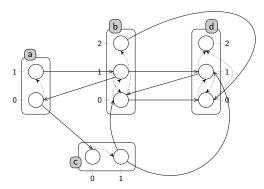

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points [PRM10-TCSB]

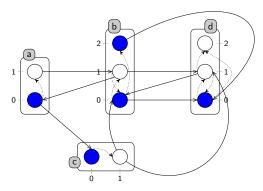
Fixed point = state where no action can be fired


- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points [PRM10-TCSB]

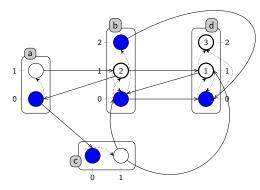

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

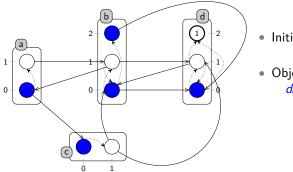


Exponential complexity w.r.t. the number of sorts

Static Analysis: Successive Reachability [PMR12-MSCS]

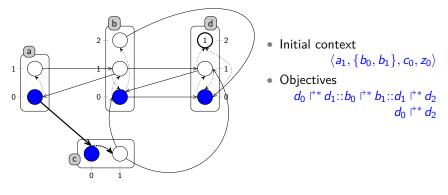


Static Analysis: Successive Reachability [PMR12-MSCS]


- Initial context
 - $\langle a_1, \{b_0, b_1\}, c_0, z_0 \rangle$

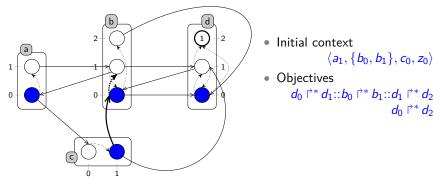
Static Analysis: Successive Reachability [PMR12-MSCS]

- Initial context
 - $\langle \textit{a}_1, \{\textit{b}_0,\textit{b}_1\},\textit{c}_0,\textit{z}_0\rangle$
- Objectives $d_0 \uparrow^* d_1 :: b_0 \uparrow^* b_1 :: d_1 \uparrow^* d_2$


Static Analysis: Successive Reachability [PMR12-MSCS]

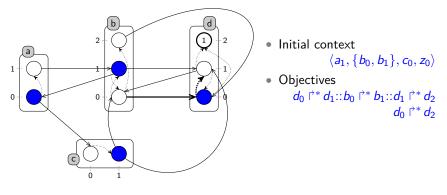
- Initial context
 - $\langle a_1, \{b_0, b_1\}, c_0, z_0 \rangle$
- Objectives $d_0 \uparrow^* d_1 :: b_0 \uparrow^* b_1 :: d_1 \uparrow^* d_2$ $d_0 \uparrow^* d_2$

Static Analysis: Successive Reachability [PMR12-MSCS]


Successive reachability of processes:

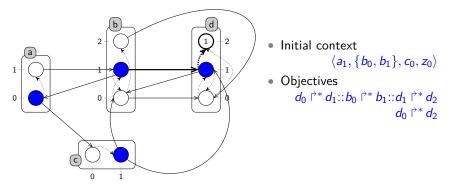
 $\begin{array}{l} \rightarrow \text{ Concretization of the objective} = \text{scenario} \\ \underline{a_0 \rightarrow c_0 \; \vec{ r} \; c_1} :: b_0 \rightarrow d_0 \; \vec{ r} \; d_1 :: c_1 \rightarrow b_0 \; \vec{ r} \; b_1 :: b_1 \rightarrow d_1 \; \vec{ r} \; d_2 \end{array}$

Static Analysis: Successive Reachability [PMR12-MSCS]


Successive reachability of processes:

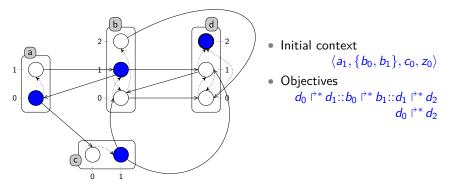
 $\begin{array}{l} \rightarrow \text{ Concretization of the objective} = \text{scenario} \\ a_0 \rightarrow c_0 \mathrel{\upharpoonright} c_1 :: \underline{b_0} \rightarrow \underline{d_0} \mathrel{\upharpoonright} \underline{d_1} :: c_1 \rightarrow b_0 \mathrel{\upharpoonright} b_1 :: b_1 \rightarrow \underline{d_1} \mathrel{\upharpoonright} \underline{d_2} \end{array}$

Static Analysis: Successive Reachability [PMR12-MSCS]


Successive reachability of processes:

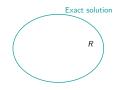
 $\begin{array}{l} \rightarrow \text{ Concretization of the objective} = \text{scenario} \\ a_0 \rightarrow c_0 \mathrel{\upharpoonright} c_1 :: b_0 \rightarrow d_0 \mathrel{\upharpoonright} d_1 :: \underbrace{c_1 \rightarrow b_0 \mathrel{\upharpoonright} b_1 :: b_1 \rightarrow d_1 \mathrel{\upharpoonright} d_2 \end{array} \end{array}$

Static Analysis: Successive Reachability [PMR12-MSCS]

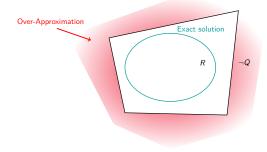

Successive reachability of processes:

 $\begin{array}{l} \rightarrow \text{ Concretization of the objective} = \text{scenario} \\ a_0 \rightarrow c_0 \mathrel{\vec{\sqcap}} c_1 :: b_0 \rightarrow d_0 \mathrel{\vec{\sqcap}} d_1 :: c_1 \rightarrow b_0 \mathrel{\vec{\sqcap}} b_1 :: \underline{b_1} \rightarrow d_1 \mathrel{\vec{\sqcap}} d_2 \end{array}$

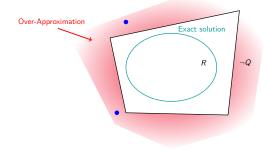
Static Analysis: Successive Reachability [PMR12-MSCS]


Successive reachability of processes:

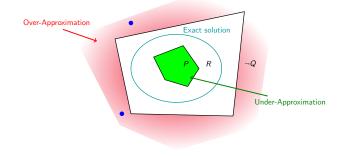
 $\begin{array}{l} \rightarrow \text{ Concretization of the objective} = \text{scenario} \\ a_0 \rightarrow c_0 \mathrel{\vec{\sqcap}} c_1 :: b_0 \rightarrow d_0 \mathrel{\vec{\sqcap}} d_1 :: c_1 \rightarrow b_0 \mathrel{\vec{\sqcap}} b_1 :: b_1 \rightarrow d_1 \mathrel{\vec{\sqcap}} d_2 \end{array}$


Over- and Under-approximations [PMR12-MSCS]

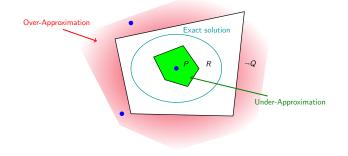
- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:


Over- and Under-approximations [PMR12-MSCS]

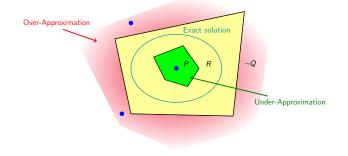
- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:


Over- and Under-approximations [PMR12-MSCS]

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

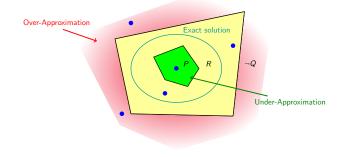

Over- and Under-approximations [PMR12-MSCS]

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:


Over- and Under-approximations [PMR12-MSCS]

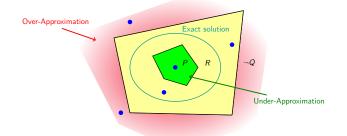
- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations [PMR12-MSCS]

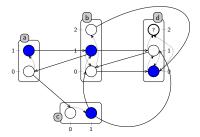

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations [PMR12-MSCS]

Static analysis by abstractions:

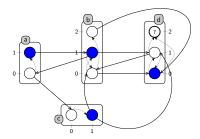

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations [PMR12-MSCS]


Static analysis by abstractions:

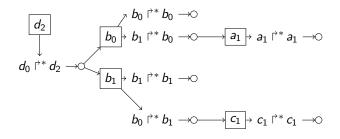
- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

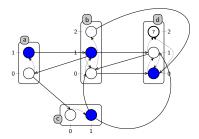
Linear w.r.t. the number of sorts and exponential w.r.t. the number of processes in each sort


 \rightarrow Efficient for big models with few levels of expression

Under-approximation

 \rightarrow New abstract structure Sufficient condition:

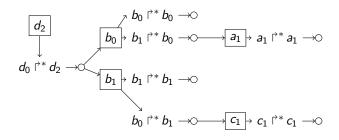


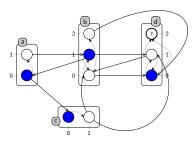


Under-approximation

 \rightarrow New abstract structure Sufficient condition:

- no cycle
- each objective has a solution

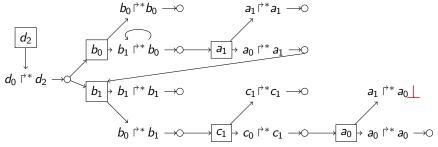


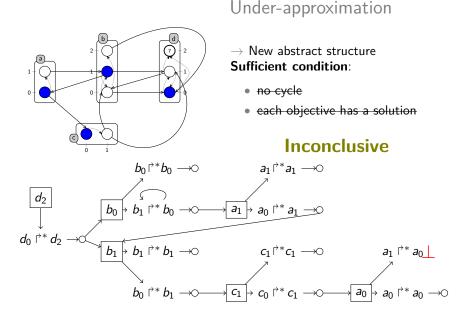

Under-approximation

 \rightarrow New abstract structure Sufficient condition:

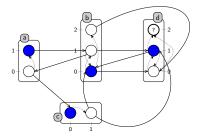
- no cycle
- each objective has a solution

R is true

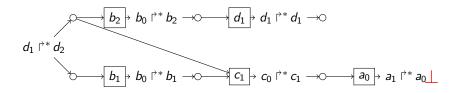


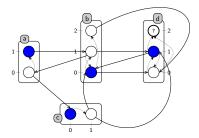


Under-approximation

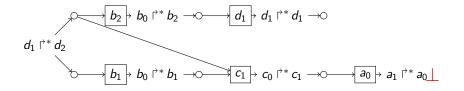

 \rightarrow New abstract structure Sufficient condition:

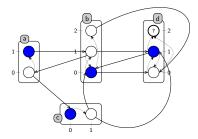
- no cycle
- each objective has a solution





Necessary condition:

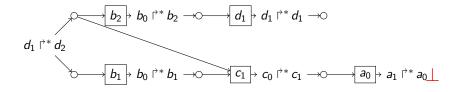


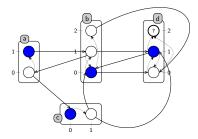

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

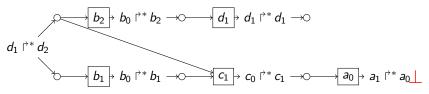


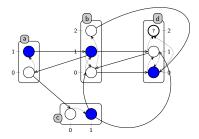

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

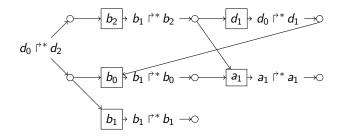

Over-approximation

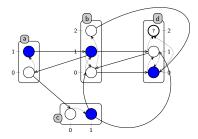

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is **false**

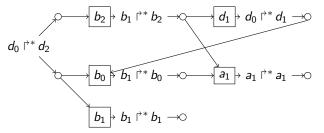


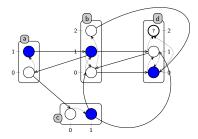

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

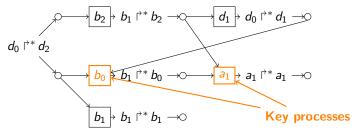

Over-approximation


Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive


Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

The Pint Tool

[processhitting.wordpress.com]

Textual language to describe a Process Hitting

Tools implemented:

- fixed points research
- stochastic simulation
- reachability checker
- translations from and to various other models
- \rightarrow Free API available for future developments

The Pint Tool

[processhitting.wordpress.com]

Textual language to describe a Process Hitting

Tools implemented:

- fixed points research
- stochastic simulation
- reachability checker
- translations from and to various other models
- \rightarrow Free API available for future developments

Results and performance (reachability analysis):

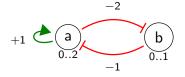
Model	sorts	procs	actions	states	Biocham ¹	libddd ²	PINT
egfr20	35	196	670	2 ⁶⁴	[3s-KO]	[1s-150s]	0.007s
tcrsig40	54	156	301	2 ⁷³	[1s-KO]	[0.6s-KO]	0.004s
tcrsig94	133	448	1124	2 ¹⁹⁴	KO	KO	0.030s
egfr104	193	748	2356	2 ³²⁰	KO	KO	0.050s

¹ [Inria Paris-Rocquencourt/Contraintes]

² [LIP6/Move]

Application to Biological Systems

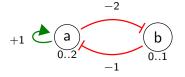
The Process Hitting framework:


- new formalism with simple elements
- dynamic modeling
- efficient reachability checking
- general framework that could be applied to...

Biological systems:

- gene/protein couples
- Thomas' Modeling: Interaction Graphs
- hard to study \rightarrow use Process Hitting

Interaction Graphs


- $\bullet \ \mathsf{Nodes} = \mathsf{Genes}$
- Directed edges = Interactions

+ Parametrization

Interaction Graphs

- $\bullet \ \mathsf{Nodes} = \mathsf{Genes}$
- Directed edges = Interactions

+ Parametrization

State Graphs

- One level at a time
- Asynchronous

$$\begin{array}{ccc} \langle a_0, b_1 \rangle & \langle a_1, b_1 \rangle \longleftarrow \langle a_2, b_1 \rangle \\ \uparrow & \uparrow & \downarrow \\ \langle a_0, b_0 \rangle \longrightarrow \langle a_1, b_0 \rangle \longrightarrow \langle a_2, b_0 \rangle \end{array}$$

Exponential number of states w.r.t. the number of genes

15/24

Tools for Interaction Graphs Study

Interaction Graphs [RCB08]:

- No positive circuit \Rightarrow only 1 attractor
- No negative circuit \Rightarrow no cyclic attractor
- Positive circuits \Rightarrow criterion for max. number of attractors
- Temporal logics \Rightarrow check properties (needs State Graph)
 - ightarrow SM-BIONET

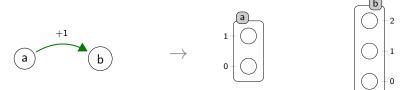
Boolean Networks [PR10-CRAS]:

• Results on topological fixed points

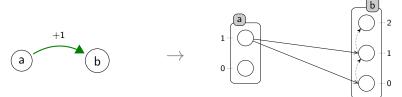
Tools for Interaction Graphs Study

Interaction Graphs [RCB08]:

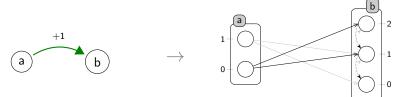
- No positive circuit \Rightarrow only 1 attractor
- No negative circuit \Rightarrow no cyclic attractor
- Positive circuits \Rightarrow criterion for max. number of attractors
- Temporal logics \Rightarrow check properties (needs State Graph) \rightarrow SM-BIONET

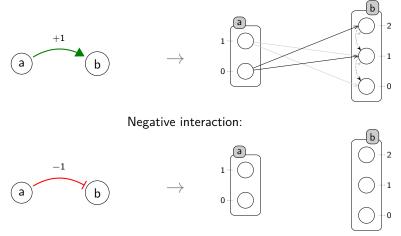

Boolean Networks [PR10-CRAS]:

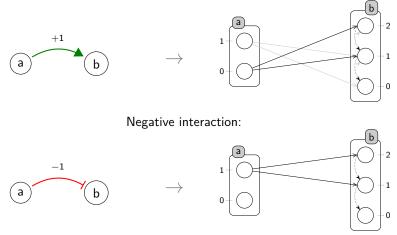
• Results on topological fixed points


 $\label{eq:problem:combinatorial explosion when computing the State Graph$

 \rightarrow Need for static analysis \rightarrow Use the Process Hitting

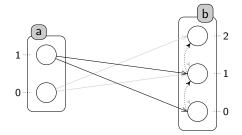

Translation of the Generalized Dynamics


Translation of the Generalized Dynamics

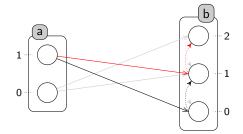

Translation of the Generalized Dynamics

Translation of the Generalized Dynamics

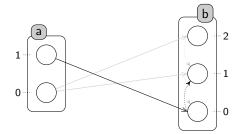
Translation of the Generalized Dynamics



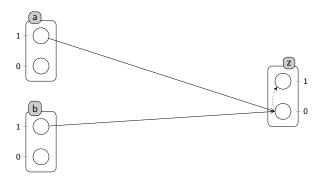
Translation of the Generalized Dynamics


Refining with Actions Removal

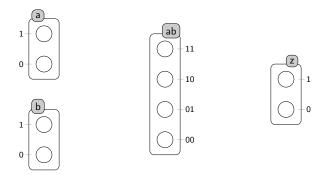
Prevent behaviors by deleting unrealistic actions


Refining with Actions Removal

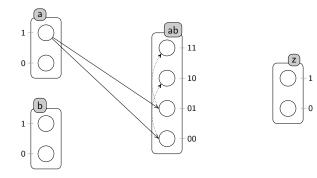
Prevent behaviors by deleting unrealistic actions


Refining with Actions Removal

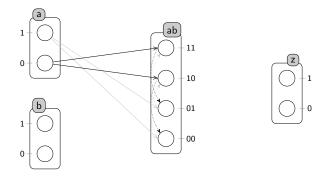
Prevent behaviors by deleting unrealistic actions


Refining with Cooperation

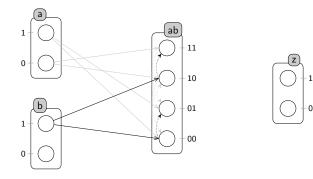
- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{r}{\vdash} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b


Refining with Cooperation

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{\scriptstyle{\uparrow}}{\vdash} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b


Refining with Cooperation

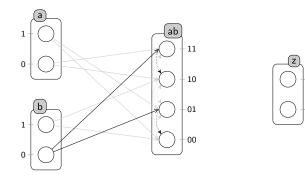
- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{\scriptstyle{
 m r}}{\to} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b


Refining with Cooperation

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{\scriptstyle{
 m r}}{\to} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b

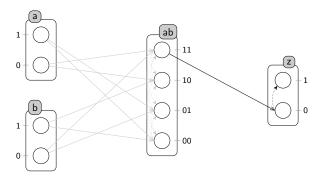
Refining with Cooperation

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{\scriptstyle{
 m r}}{\to} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b



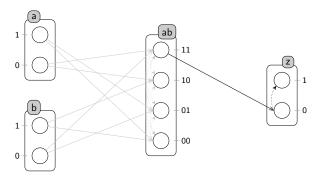
Refining with Cooperation

1


0

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{\scriptstyle{
 m r}}{\to} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b

Refining with Cooperation


- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b

Refining with Cooperation

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{r}{\vdash} z_1$?
- ightarrow Add a "cooperative sort" reflecting the state of a and b

ightarrow Introduces a temporal shift (over-approximation)

Using Process Hitting for Interaction Graphs Study

The Interaction Graph is the historical discrete model Adapted to and widespread in biological studies

Several tools to study Interaction Graphs But for some results, the State Graph is needed

ightarrow Combinatorial explosion

Process Hitting to study large Biological Regulatory Networks

- ightarrow Translation from Interaction Graphs + Refining
- ightarrow Efficient static analysis

Ongoing Work

Several student projects:

- Optimization of fixed points research
 - ightarrow OOP-oriented research (Java)
 - \rightarrow CSP solver-oriented research (Choco) [choco.emn.fr]
- Study of the circadian clock
 - ightarrow use of the Process Hitting
- Graphical interface for the Process Hitting
 - \rightarrow generalize its use by biologists
 - \rightarrow show/use the static analysis results

Ongoing Work

Some developments:

- Framework evolutions
 - ightarrow Priorities between actions
 - ightarrow Neutralizing Edges (weak bisimulation)
- Working with Interaction Graphs
 - \rightarrow Translation to Process Hitting
 - ightarrow Joint Actions (weak bisimulation)

Suggested personal subject:

- Using solvers to gain knowledge on Interaction Graphs
- Translation, then refining and constraints
 - \rightarrow Information on the parametrization

Conclusion

Study of systems

ightarrow Combinatorial explosion

Process Hitting

- \rightarrow Simple modeling for large systems
- \rightarrow Applications to Biological Regulatory Networks
- ightarrow Efficient static analysis
- ightarrow Further development (priorities, temporal data)

Conclusion

Study of systems

ightarrow Combinatorial explosion

Process Hitting

- \rightarrow Simple modeling for large systems
- \rightarrow Applications to Biological Regulatory Networks
- ightarrow Efficient static analysis
- ightarrow Further development (priorities, temporal data)

Thank you

Bibliography

[Paulevé11] PhD thesis: Modélisation, Simulation et Vérification des Grands Réseaux de Régulation Biologique, October 2011, Nantes, France

- [PMR10-TSE] Loïc Paulevé, Morgan Magnin, and Olivier Roux. *Tuning Temporal Features within the Stochastic* π -*Calculus.* IEEE Transactions on Software Engineering, 37(6):858-871, 2011.
- [PRM10-TCSB] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors, Transactions on Computational Systems Biology XIII, volume 6575 of Lecture Notes in Computer Science, 171-191. Springer Berlin/Heidelberg, 2011.
- [PMR12-MSCS] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science, in press, 2012.
- [PR10-CRAS] Loïc Paulevé and Adrien Richard. Topological Fixed Points in Boolean Networks. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 348(15-16):825 - 828, 2010.
- [RCB08] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. R. Thomas' logical method, Apr. 2008. Invited at Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.