PhD defense

Algebraic Modeling of the Multi-Scale Dynamics of Biological Regulatory Networks

Maxime FOLSCHETTE

MeForBio / IRCCyN / École centrale de Nantes (Nantes, France)
maxime.folschette@irccyn.ec-nantes.fr
http://maxime.folschette.name/

2014/10/08

Rapporteurs: Jean-Paul COMET, Professeur des universités, Université de Nice - Sophia Antipolis

Anne SIEGEL, Directrice de recherche CNRS, IRISA (CNRS & Université Rennes 1), Inria Rennes

Examinateurs : Mireille RÉGNIER, Directrice de recherche Inria, École polytechnique & Université Paris-Sud 11

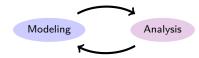
Denis THIEFFRY, Professeur des universités, École normale supérieure

Directeur de thèse : Olivier ROUX, Professeur des universités, École centrale de Nantes Co-encadrant de thèse : Morgan MAGNIN, Maître de conférences, École centrale de Nantes

Modeling a system is the first step towards its comprehension

Modeling

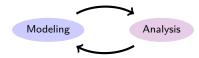
Analysis


Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

• The modeling tools must be adapted to the observed properties

Modeling a system is the first step towards its comprehension


The required analysis has an impact on modeling

• The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis

- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

• The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis

- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

The modeling and analysis steps of a system are strongly linked

Overview of This Presentation

State of the Art of the modeling of biological regulatory networks

- · Discrete asynchronous representations and Thomas modeling
- Standard Process Hitting

Overview of This Presentation

State of the Art of the modeling of biological regulatory networks

- Discrete asynchronous representations and Thomas modeling
- Standard Process Hitting

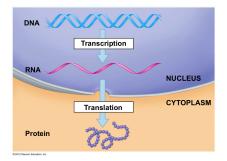
Enriching the Process Hitting

- · Integration of temporal constraints
- Synchronicity between actions
 - → Adding of priorities, neutralizing edges or synchronous actions

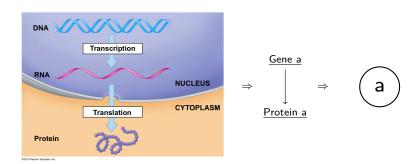
Overview of This Presentation

State of the Art of the modeling of biological regulatory networks

- Discrete asynchronous representations and Thomas modeling
- Standard Process Hitting

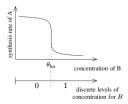

Enriching the Process Hitting

- · Integration of temporal constraints
- Synchronicity between actions
 - → Adding of priorities, neutralizing edges or synchronous actions

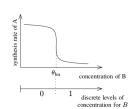

Analysis of the Process Hitting

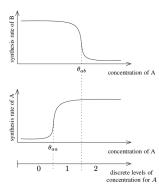
- Correction of the cooperative sorts
- · Static analysis of reachability
- Equivalences and links with other formalisms

Abstractions of the Representation

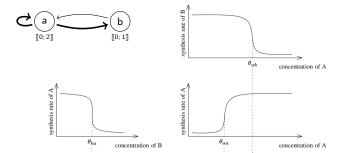


Abstractions of the Representation


[Richard, Comet, Bernot (tutorial), 2008]



[Richard, Comet, Bernot (tutorial), 2008]

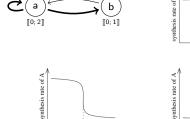


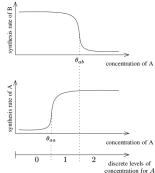
2

discrete levels of

concentration for A

[Richard, Comet, Bernot (tutorial), 2008]


- Unknown real values of concentrations or continuous activity levels
 - → Abstracted as thresholds or discrete levels

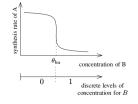

discrete levels of

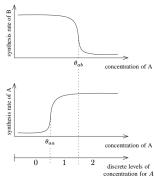
concentration for B

0

[Richard, Comet, Bernot (tutorial), 2008]

concentration of B


discrete levels of


concentration for B

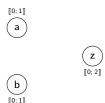
- · Continuous variations of the real values
 - → Unitary dynamics

[Richard, Comet, Bernot (tutorial), 2008]

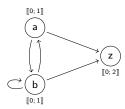
- Unknown real values of concentrations or continuous activity levels
 Abstracted as thresholds or discrete levels
- Continuous variations of the real values
 - → **Unitary** dynamics
- Simultaneous crossings of two thresholds never occurs
 - \rightarrow **Asynchronous** dynamics

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

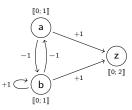


[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

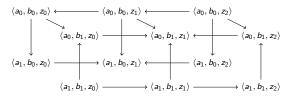

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$
- An evolution function for each component $f^z : \mathbb{F} \to \mathbb{F}^z$

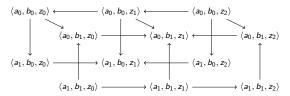

Ь	$f^a(b)$	а	Ь	$f^b(a,b)$	а	Ь	$f^{z}(a,b)$
		0	0	1	0	0	0
0	0	0	1	1	0	1	1
		1	0	0	1	0	1
		1	1	1	1	1	2

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]


- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = \llbracket 0; 2 \rrbracket$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$
- An evolution function for each component $f^z : \mathbb{F} \to \mathbb{F}^z$
- Signs and thresholds on the edges $a \xrightarrow{+1} z$

Ь	$f^a(b)$	а	Ь	$f^b(a,b)$	а	Ь	$f^{z}(a,b)$
0	1	0	0	1	0	0	0
1	0	0	1	1	0	1	1
	•	1	0	0	1	0	1
		1	1	1	1	1	2

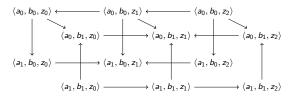
Analysis of Thomas Modeling


The State graph is computed in a unitary and asynchronous fashion

→ Exponential size in the number of components

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion


→ Exponential size in the number of components

Some works all to link the structure of the model and some dynamic properties:

- Thomas' conjectures (conditions for multi-stationarity or sustained oscillations)
 - Boolean case: [Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
 - Multivalued case: [Richard, Comet in Discrete Applied Mathematics, 2007]

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

→ Exponential size in the number of components

Some works all to link the structure of the model and some dynamic properties:

- Thomas' conjectures (conditions for multi-stationarity or sustained oscillations)
 - Boolean case: [Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
 - Multivalued case: [Richard, Comet in Discrete Applied Mathematics, 2007]

But reachability properties require to compute the whole state graph:

Example: From the initial state (a, b, z) = (0, 0, 0), is it possible to reach z = 2?

- Temporal logics
 - CTL: [Bernot, Comet, Richard, Guespin in Journal of Theoretical Biology, 2004]
 - LTL: [Ito, Izumi, Hagihara, Yonezaki in BioInformatics and BioEngineering, 2010]

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Standard Process Hitting is:

- Well-adapted to the modeling of BRNs
- An atomistic and qualitative modeling (explicit & discrete expression levels)
- Simple but powerful dynamics (constraints on the form of actions)

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Standard Process Hitting is:

- Well-adapted to the modeling of BRNs
- An atomistic and qualitative modeling (explicit & discrete expression levels)
- Simple but powerful dynamics (constraints on the form of actions)

Previously developed tools:

- Reachability analysis by abstract interpretation
- Fixed points enumeration
- Stochastic parameters
- → Well-adapted formalism to study large BRNs

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Standard Process Hitting is:

- Well-adapted to the modeling of BRNs
- An atomistic and qualitative modeling (explicit & discrete expression levels)
- Simple but powerful dynamics (constraints on the form of actions)

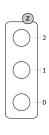
Previously developed tools:

- Reachability analysis by abstract interpretation
- Fixed points enumeration
- Stochastic parameters
- → Well-adapted formalism to study large BRNs

Several missing features:

- Faulty representation cooperations
- Possible enrichment of the expressivity
 - → Which requires to adapt the previous tools

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]



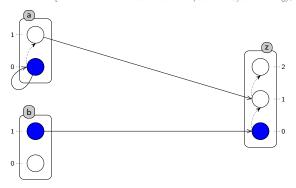
Sorts: components a, b, z

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

Processes: local states / discrete expression levels z_0 , z_1 , z_2

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

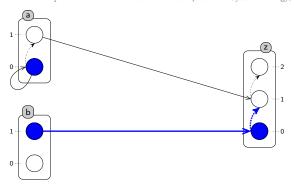


Sorts: components a, b, z

Processes: local states / discrete expression levels z_0 , z_1 , z_2

States: sets of active processes $\langle a_0, b_1, z_0 \rangle$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

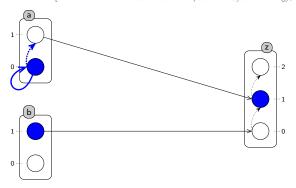

Sorts: components a, b, z

Processes: local states / discrete expression levels z_0 , z_1 , z_2

States: sets of active processes $\langle a_0, b_1, z_0 \rangle$

Actions: dynamics $b_1 \rightarrow z_0 \ \ \vec{r} \ z_1, \ a_0 \rightarrow a_0 \ \ \vec{r} \ a_1, \ a_1 \rightarrow z_1 \ \ \vec{r} \ z_2$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

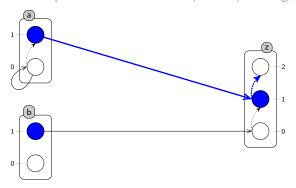

Sorts: components a, b, z

Processes: local states / discrete expression levels z_0 , z_1 , z_2

States: sets of active processes $\langle a_0, b_1, z_0 \rangle$

Actions: dynamics $b_1 \rightarrow z_0 \ \ \vec{r} \ z_1, \ a_0 \rightarrow a_0 \ \ \vec{r} \ a_1, \ a_1 \rightarrow z_1 \ \ \vec{r} \ z_2$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

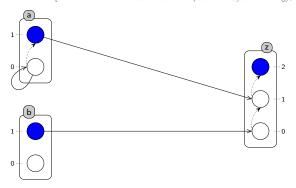

Sorts: components a, b, z

Processes: local states / discrete expression levels z_0 , z_1 , z_2

States: sets of active processes $\langle a_0, b_1, z_1 \rangle$

Actions: dynamics $b_1 o z_0
vert z_1$, $a_0 o a_0
vert a_1$, $a_1 o z_1
vert z_2$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]


Sorts: components a, b, z

Processes: local states / discrete expression levels z_0 , z_1 , z_2

States: sets of active processes $\langle a_1, b_1, z_1 \rangle$

Actions: dynamics $b_1 \rightarrow z_0 \ \stackrel{?}{\vdash} \ z_1, \ a_0 \rightarrow a_0 \ \stackrel{?}{\vdash} \ a_1, \ a_1 \rightarrow z_1 \ \stackrel{?}{\vdash} \ z_2$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

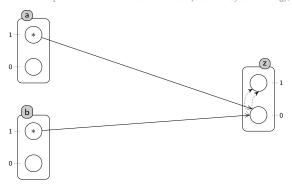
Processes: local states / discrete expression levels z_0 , z_1 , z_2

States: sets of active processes $\langle a_1, b_1, z_2 \rangle$

Actions: dynamics $b_1 \rightarrow z_0 \ \ \vec{r} \ z_1, \ a_0 \rightarrow a_0 \ \ \vec{r} \ a_1, \ a_1 \rightarrow z_1 \ \ \vec{r} \ z_2$

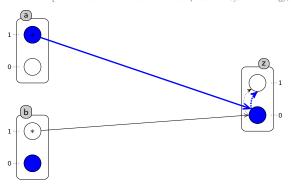
Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

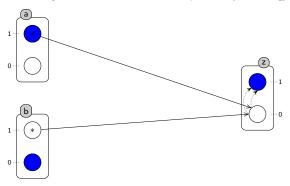


Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \uparrow z_1$

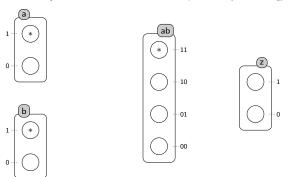
Cooperations


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \not \vdash z_1$

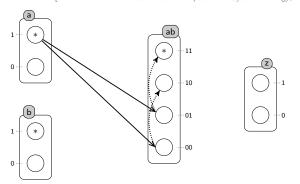

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]


Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \not \vdash z_1$

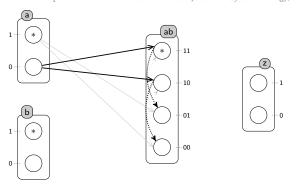
[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \uparrow z_1$


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

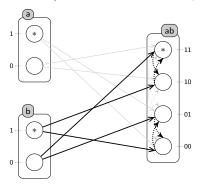
Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \upharpoonright z_1$

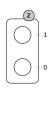
Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \upharpoonright z_1$

Solution: a **cooperative sort** ab to express $\underline{a_1 \wedge b_1}$

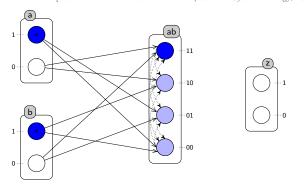

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]



Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \stackrel{?}{\vdash} z_1$

Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

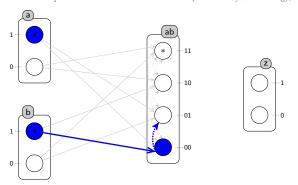
[Paulevé et al. in Transactions on Computational Systems Biology, 2011]



Cooperation between a_1 and b_1 : $\underline{a_1 \wedge b_1} o z_0
otin z_1$

Solution: a **cooperative sort** ab to express $\underline{a_1 \wedge b_1}$

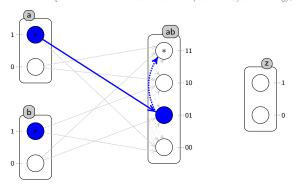
[Paulevé et al. in Transactions on Computational Systems Biology, 2011]



Cooperation between a_1 and b_1 : $\underline{a_1 \wedge b_1} o z_0
ightharpoonup z_1$

Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

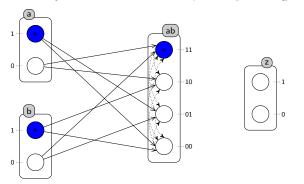
Each configuration is represented by one process $\underline{a_1 \wedge b_1} \Rightarrow ab_{11}$


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $\underline{a_1 \wedge b_1} \to z_0 \upharpoonright z_1$ Solution: a **cooperative sort** ab to express $\underline{a_1 \wedge b_1}$

Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

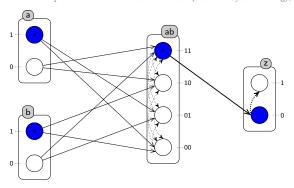


Cooperation between a_1 and b_1 : $\underline{a_1 \wedge b_1} o z_0
otin z_1$

Solution: a **cooperative sort** ab to express $\underline{a_1 \wedge b_1}$

Each configuration is represented by one process $\underline{a_1 \wedge b_1} \Rightarrow ab_{11}$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

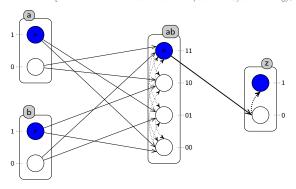


Cooperation between a_1 and b_1 : $\underline{a_1 \wedge b_1} o z_0
otin z_1$

Solution: a **cooperative sort** ab to express $\underline{a_1 \wedge b_1}$

Each configuration is represented by one process $\underline{a_1 \wedge b_1} \Rightarrow ab_{11}$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]



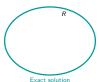
Cooperation between a_1 and b_1 : $\underline{a_1 \wedge b_1} \rightarrow z_0 \upharpoonright z_1$

Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

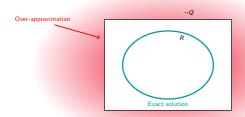
Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \upharpoonright z_1$


Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

Each configuration is represented by one process $\underline{a_1 \wedge b_1} \Rightarrow ab_{11}$

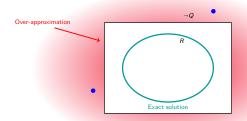
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:


« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

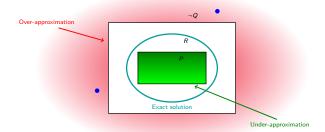
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:


« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

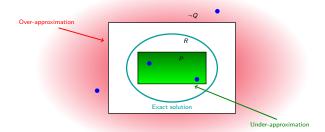
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:


« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

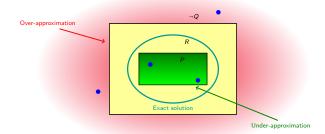
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:


« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

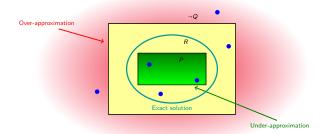
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:


« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

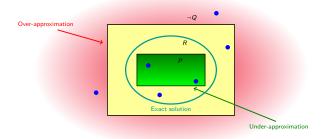
Check reachability properties:


« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

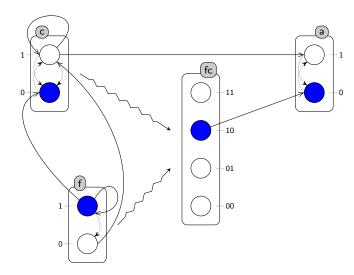


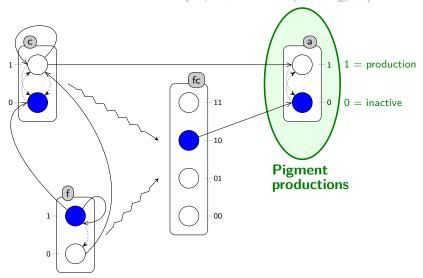
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

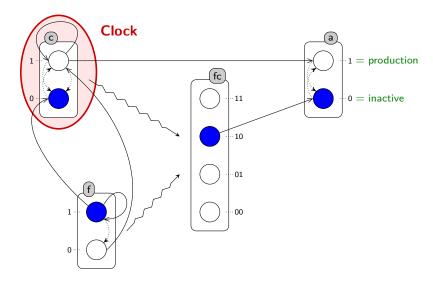
Check reachability properties:

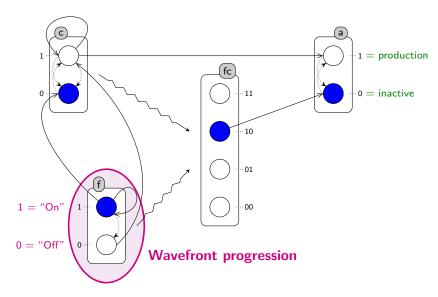
« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? »

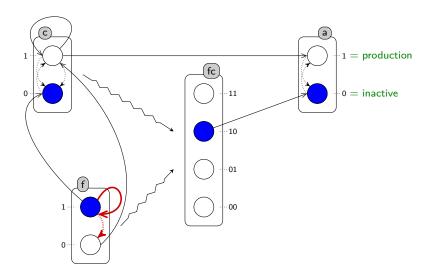
Approximations: P and Q, built so that $P \Rightarrow R \Rightarrow Q$

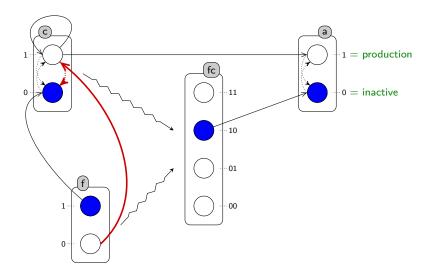


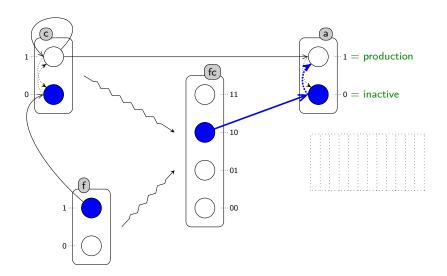

Polynomial complexity in the number of sorts Exponential complexity in the number of processes in each sort

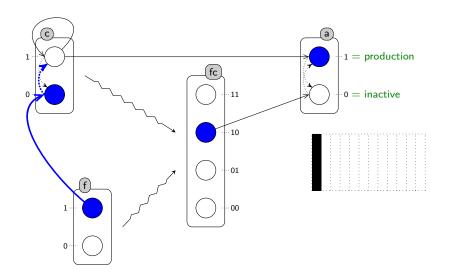

→ Efficient for big models with few expression levels

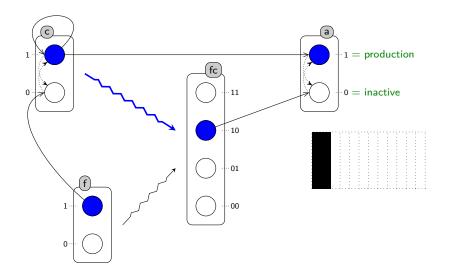

Standard Process Hitting

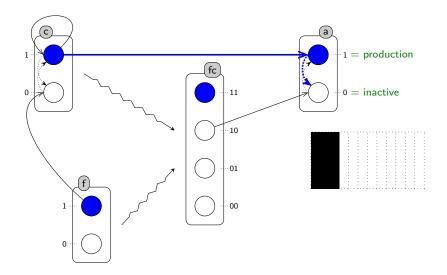

Standard Process Hitting

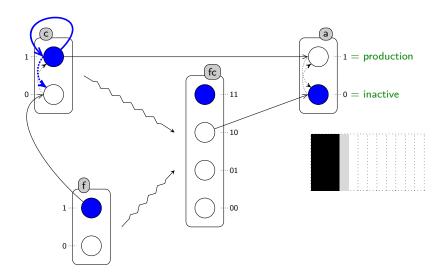


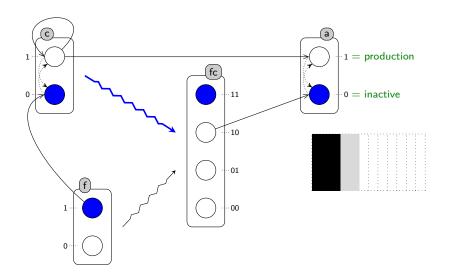


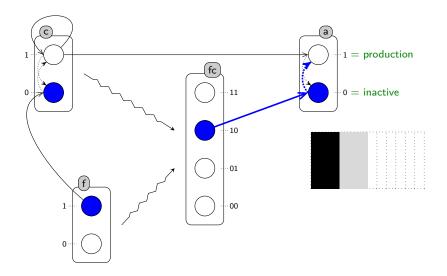


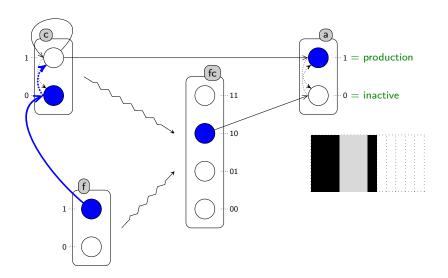


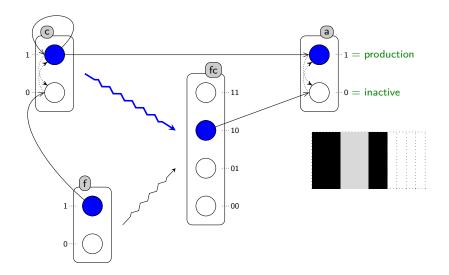


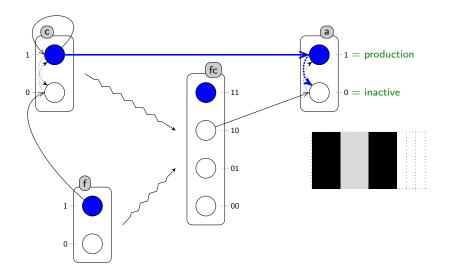


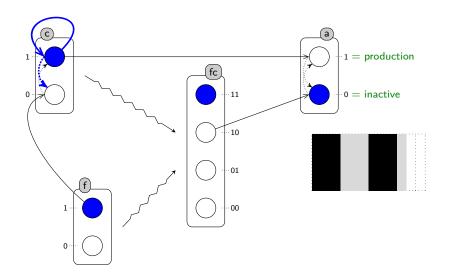


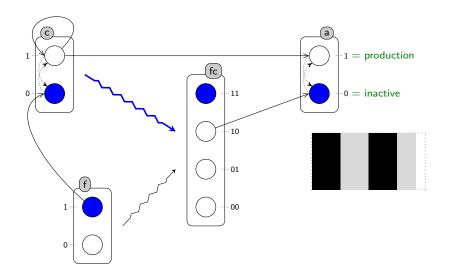


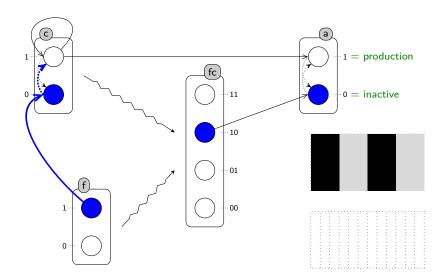


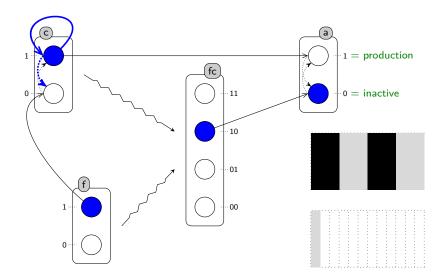


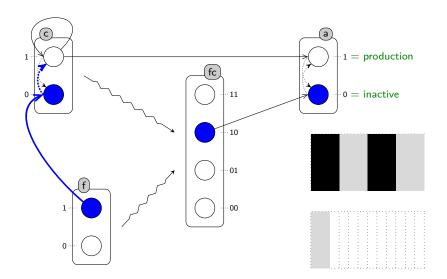


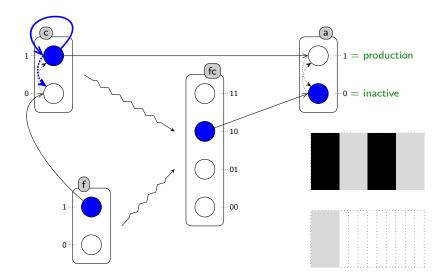


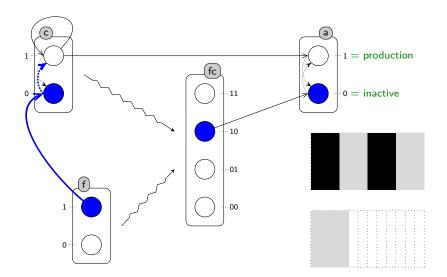


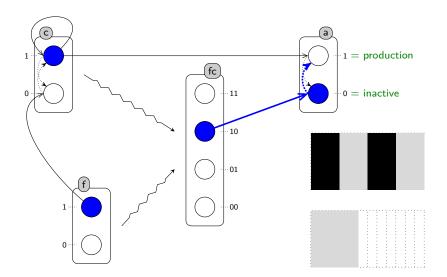


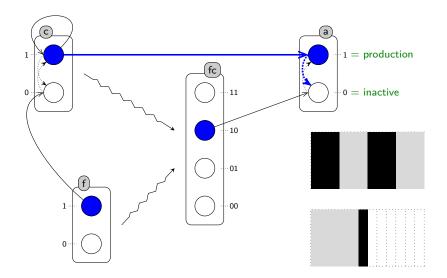


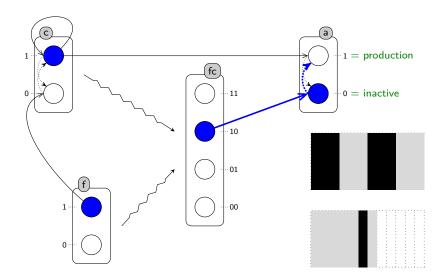


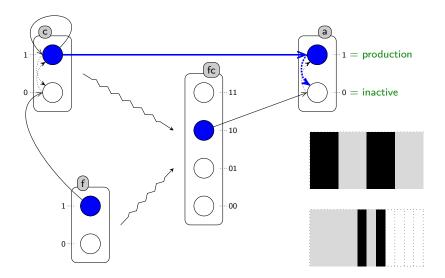


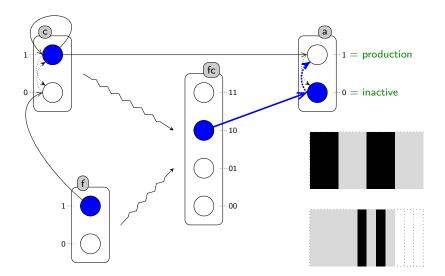


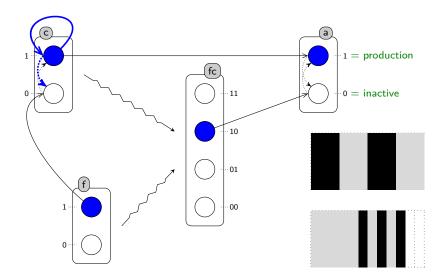


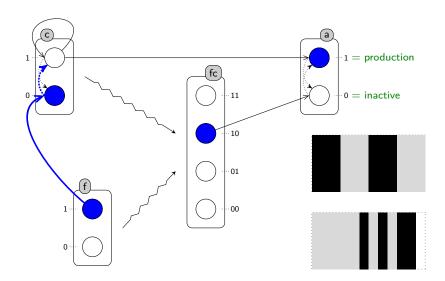


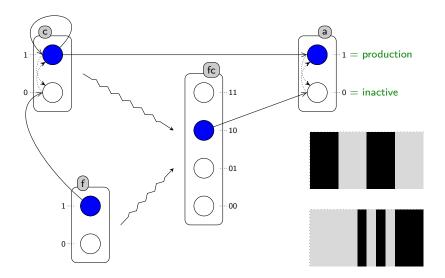




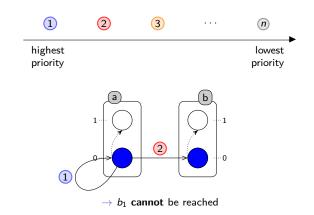




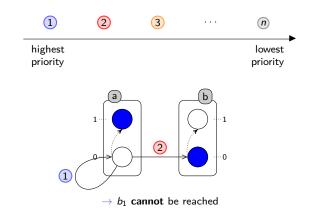




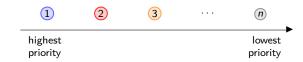
Process Hitting with Classes of Priorities


Process Hitting with classes of priority

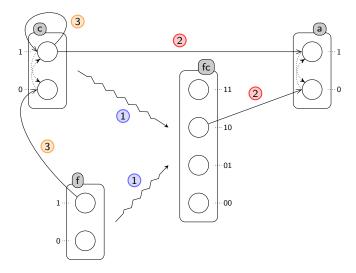
> Standard Process Hitting

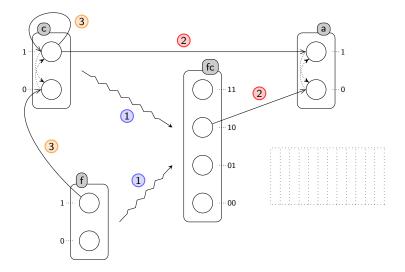

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

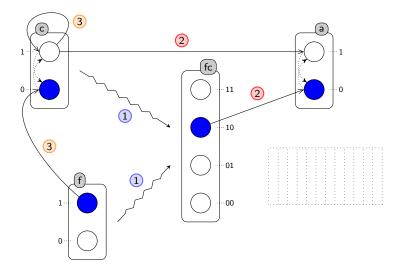
- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

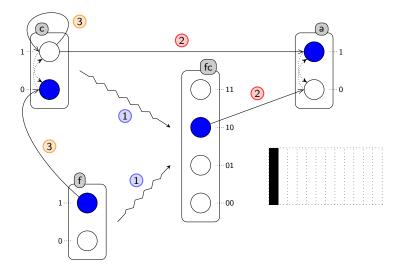


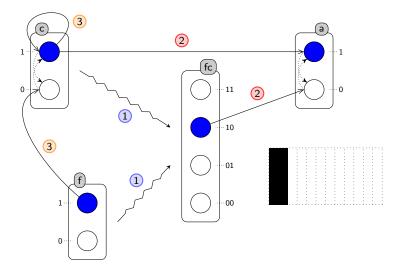
- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

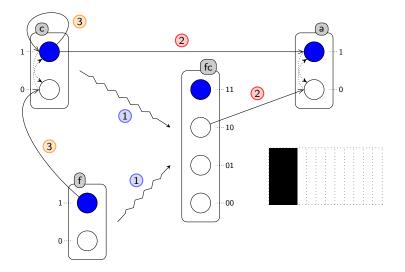

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

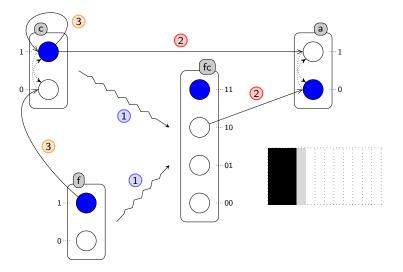

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

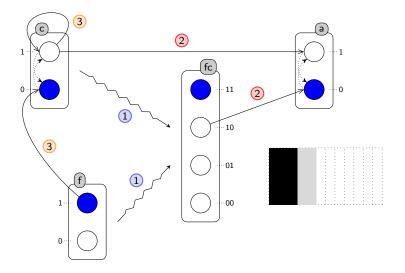


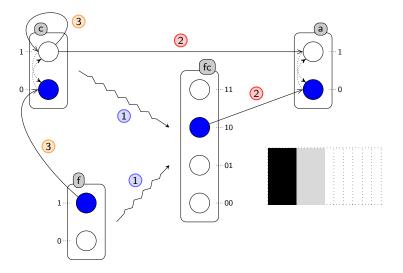

Allow to model classes of actions with similar speeds or temporal parameters

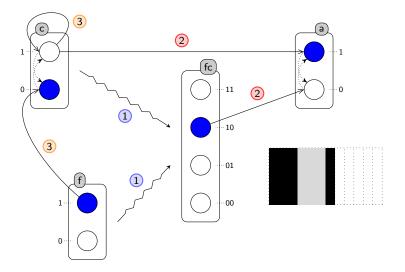


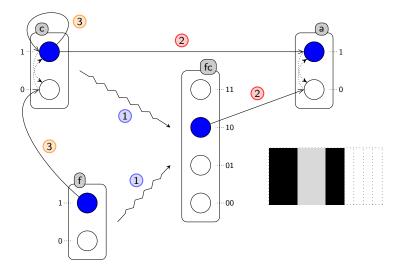


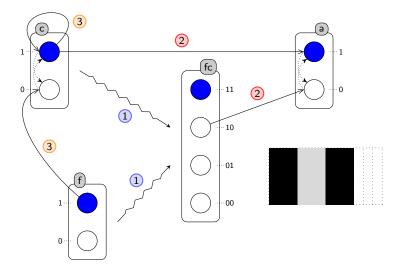


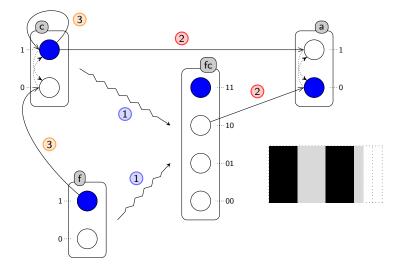


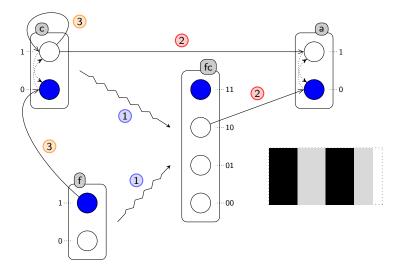


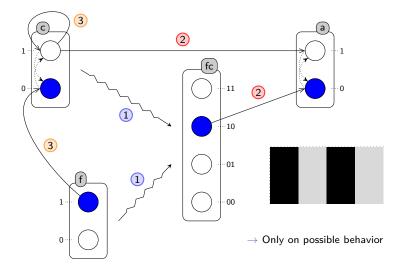


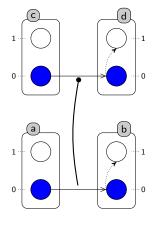








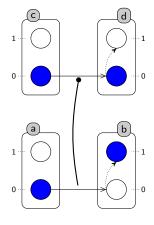




Process Hitting with Neutralizing Edges

Process Hitting with classes of priority **Process Hitting** with neutralizing edges Standard Process Hitting

Addition of Neutralizing Edges

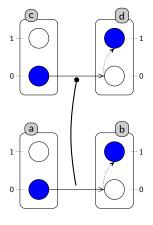

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

 $c_0
ightarrow d_0
estriction d_1$ cannot be plays while

 $a_0
ightarrow b_0
vert^{
ho} b_1$ is playable

 $ightarrow d_1$ is **always** reached after b_1

Addition of Neutralizing Edges

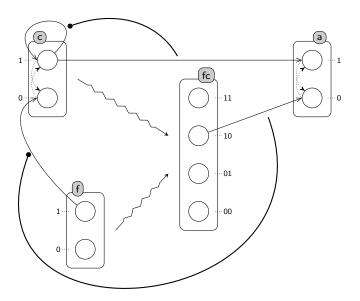


- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

 $a_0 \rightarrow b_0 \upharpoonright b_1$ is playable

 $ightarrow d_1$ is **always** reached after b_1

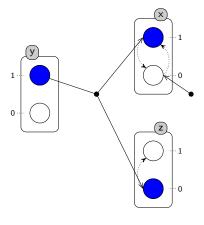
Addition of Neutralizing Edges


- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

 $c_0
ightarrow d_0
estriction d_1$ cannot be plays while

 $a_0 \rightarrow b_0 \upharpoonright b_1$ is playable

 $ightarrow d_1$ is **always** reached after b_1

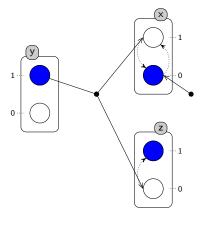

Use of Neutralizing Edges

Process Hitting with Synchronous Actions

Process Hitting with classes of priority **Process Hitting** Process Hitting with neutralizing edges with synchronous actions Standard Process Hitting

Addition of Synchronous Actions

- Synchronizations between actions:
 - All catalysts must be present
 - Reactants are consumed all together
 - Simultaneous creation of the products
- Representation of biochemical equations: $X \xrightarrow{Y} Z$


under the form:

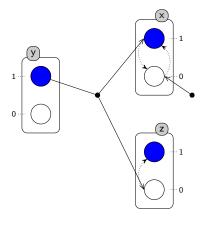
$$h_2 = \{x_1, y_1, z_0\} \rightarrowtail \{x_0, z_1\}$$

All processes of A must be present to play $A \rightarrow B$

After the play of $A \rightarrow B$, all processes of B are present

Addition of Synchronous Actions

- Synchronizations between actions:
 - All catalysts must be present
 - Reactants are consumed all together
 - Simultaneous creation of the products
- Representation of biochemical equations: $X \xrightarrow{Y} Z$


under the form:

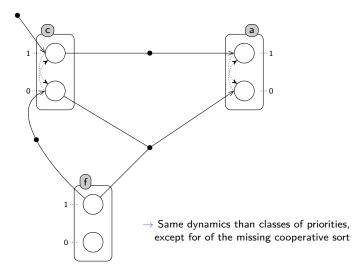
$$h_2 = \{x_1, y_1, z_0\} \rightarrowtail \{x_0, z_1\}$$

All processes of A must be present to play $A \rightarrow B$

After the play of $A \rightarrow B$, all processes of B are present

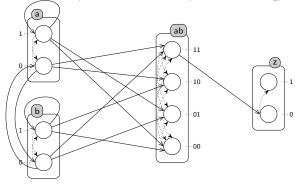
Addition of Synchronous Actions

- Synchronizations between actions:
 - All catalysts must be present
 - Reactants are consumed all together
 - Simultaneous creation of the products
- Representation of biochemical equations: $X \xrightarrow{Y} Z$

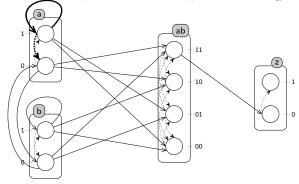

under the form:

$$h_2 = \{x_1, y_1, z_0\} \rightarrowtail \{x_0, z_1\}$$

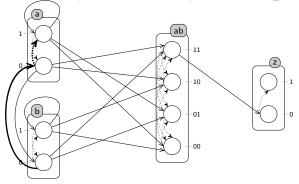
All processes of A must be present to play $A \rightarrow B$

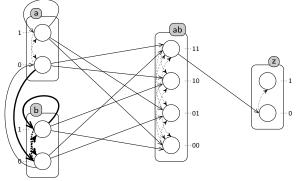

After the play of $A \rightarrow B$, all processes of B are present

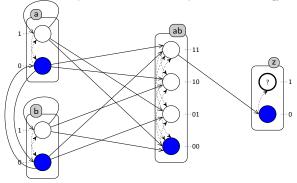
Use of Synchronous Actions



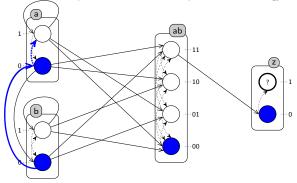
Process Hitting with classes of priority Canonical Process Hitting **Process Hitting Process Hitting** with neutralizing edges with synchronous actions Standard Process Hitting


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

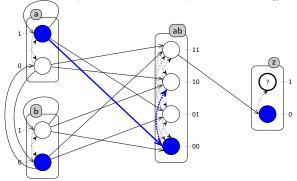

[Folschette et al. in_Workshop on Interactions between Computer Science and Biology, 2013]


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

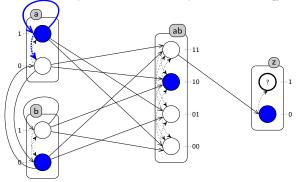
[Folschette et al. in_Workshop on Interactions between Computer Science and Biology, 2013]



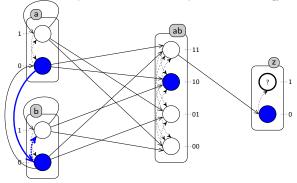
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


$$\langle a_0, b_0, ab_{00}, z_0 \rangle$$

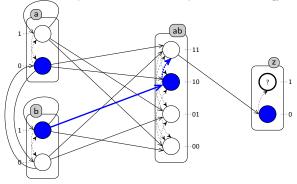
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


$$\langle a_0, b_0, ab_{00}, z_0 \rangle$$

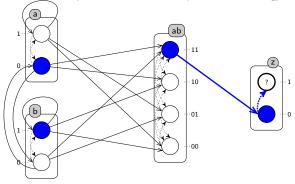
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle$$

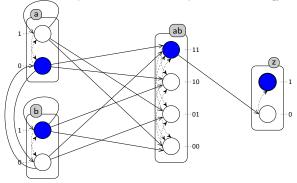
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle$$

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


$$\langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{10},z_0\rangle \rightarrow \langle a_0,b_0,ab_{10},z_0\rangle$$

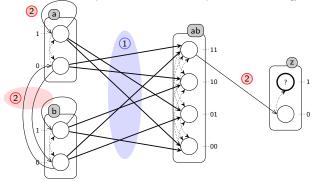
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


$$\begin{array}{l} \langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{10},z_0\rangle \rightarrow \langle a_0,b_0,ab_{10},z_0\rangle \\ \rightarrow \langle a_0,b_1,ab_{10},z_0\rangle \end{array}$$

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

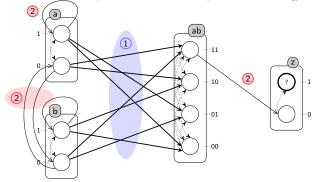
$$\begin{array}{l} \langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{10},z_0\rangle \rightarrow \langle a_0,b_0,ab_{10},z_0\rangle \\ \rightarrow \langle a_0,b_1,ab_{10},z_0\rangle \rightarrow \langle a_0,b_1,ab_{11},z_0\rangle \end{array}$$

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

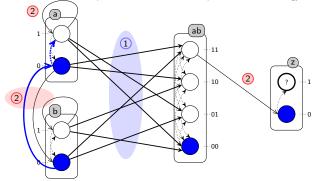

Drawback: the cooperative sorts are too "loose" (temporal shift)

$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle \rightarrow \langle a_0, b_0, ab_{10}, z_0 \rangle$$

$$\rightarrow \langle a_0, b_1, ab_{10}, z_0 \rangle \rightarrow \langle a_0, b_1, ab_{11}, z_0 \rangle \rightarrow \langle a_0, b_1, ab_{11}, z_1 \rangle$$

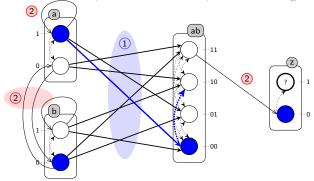

Expected behavior: $a_1 \wedge b_1$ **simultaneously** i.e. "in the same state" Obtained behavior: $P(a_1) \wedge P(b_1)$ with P = "previously"

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


- ullet Primary actions (updating cooperative sorts) o ullet non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

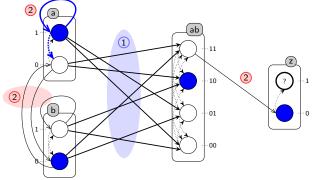
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) \rightarrow 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) o 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

$$\langle a_0, b_0, ab_{00}, z_0 \rangle$$


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

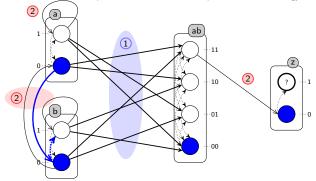
- Primary actions (updating cooperative sorts) ightarrow 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle$$

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

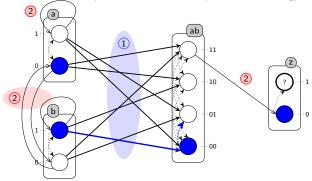
- Primary actions (updating cooperative sorts) \rightarrow 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle$$


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

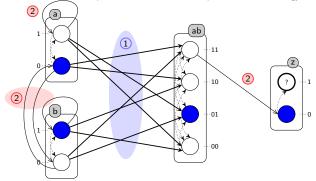
- Primary actions (updating cooperative sorts) \rightarrow 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

$$\langle \textit{a}_0, \textit{b}_0, \textit{ab}_{00}, \textit{z}_0 \rangle \rightarrow \langle \textit{a}_1, \textit{b}_0, \textit{ab}_{00}, \textit{z}_0 \rangle \rightarrow \langle \textit{a}_1, \textit{b}_0, \textit{ab}_{10}, \textit{z}_0 \rangle \rightarrow \langle \textit{a}_0, \textit{b}_0, \textit{ab}_{10}, \textit{z}_0 \rangle$$


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) \rightarrow 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

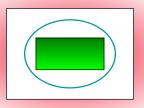
$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle \rightarrow \langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_0, b_0, ab_{00}, z_0 \rangle$$


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) o 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

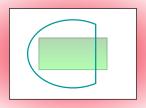
$$\begin{array}{l} \langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{10},z_0\rangle \rightarrow \langle a_0,b_0,ab_{10},z_0\rangle \\ \rightarrow \langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_0,b_1,ab_{00},z_0\rangle \end{array}$$

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

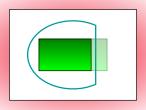


- Primary actions (updating cooperative sorts) o 1 non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow 2 biological / controllable actions / with delays

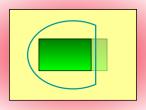
$$\begin{array}{l} \langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{00},z_0\rangle \rightarrow \langle a_1,b_0,ab_{10},z_0\rangle \rightarrow \langle a_0,b_0,ab_{10},z_0\rangle \\ \rightarrow \langle a_0,b_0,ab_{00},z_0\rangle \rightarrow \langle a_0,b_1,ab_{00},z_0\rangle \rightarrow \langle a_0,b_1,ab_{01},z_0\rangle \end{array}$$


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

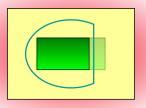

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

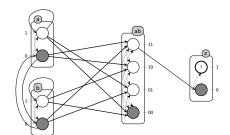
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

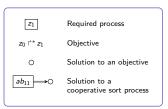

Adding priorities restricts the possible dynamics (preemptions)

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

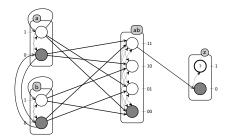
→ Invalidates the previous under-approximation

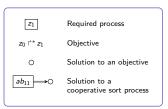



Similar complexity for a more expressive formalism

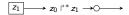
- → Still efficient for big models
- \rightarrow Finer under-approximation

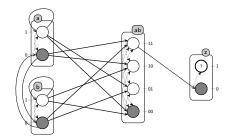
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

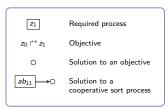




[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

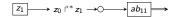


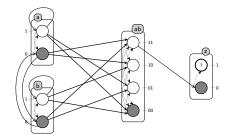


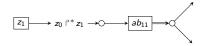


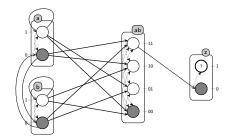
Maxime FOLSCHETTE 27/37 PhD defense — 2014/10/08

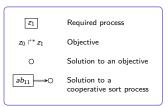
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]



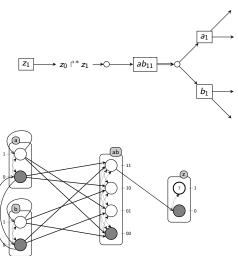


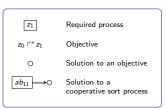

Maxime FOLSCHETTE 27/37 PhD defense — 2014/10/08

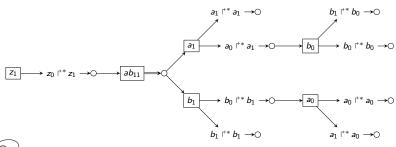

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

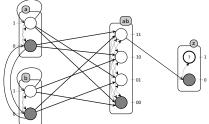


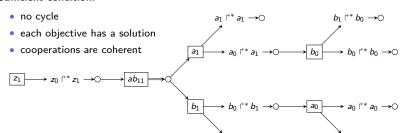
[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

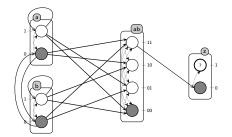




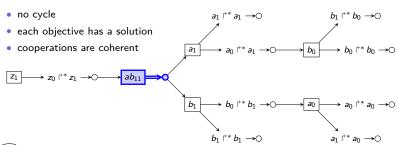

Maxime FOLSCHETTE 27/37 PhD defense — 2014/10/08

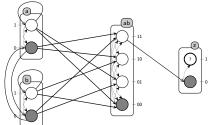

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

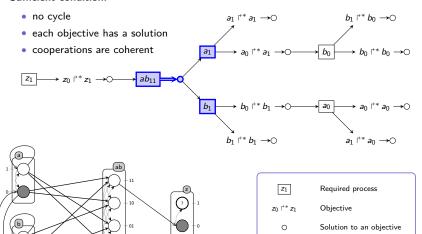


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


Sufficient condition:

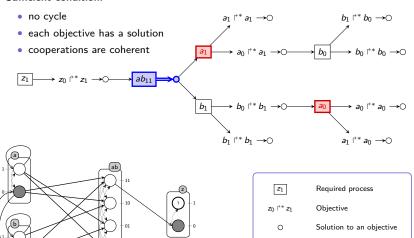


[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]


Sufficient condition:

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Sufficient condition:

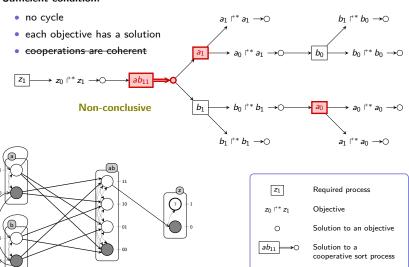


Maxime FOLSCHETTE 27/37 PhD defense — 2014/10/08

Solution to a cooperative sort process

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Sufficient condition:



Maxime FOLSCHETTE 27/37 PhD defense — 2014/10/08

Solution to a cooperative sort process

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Sufficient condition:

Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
 - · Polynomial in the number of sorts
 - Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
 - · Polynomial in the size of the graph

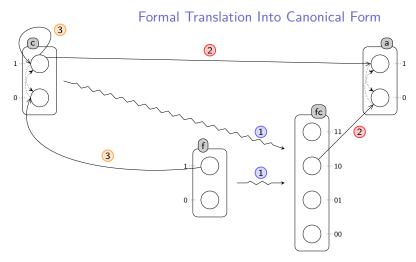
Implementation of the Static Analysis Into PINT

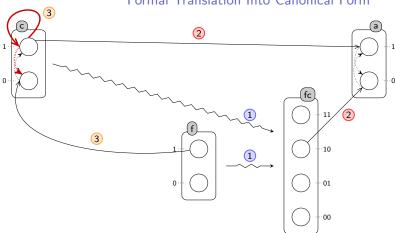
Complexity:

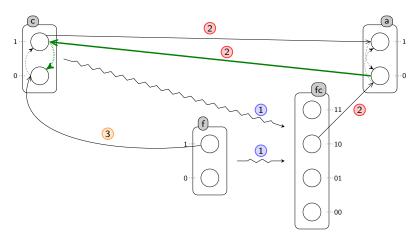
- Computation of the local causality graph:
 - · Polynomial in the number of sorts
 - Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
 - · Polynomial in the size of the graph

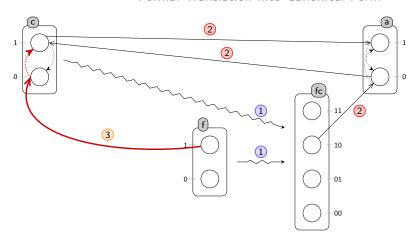
Makes the study of large networks tractable:

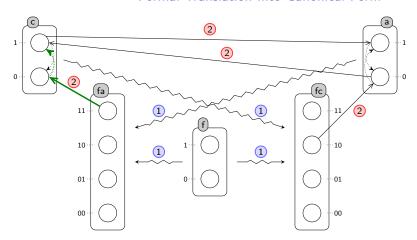
Modèle	Sortes	Processus	Actions	États	libddd ¹	GINsim ²	PINT
egfr20	35	196	670	2 ⁶⁴		<1s	0.02s
tcrsig40	54	156	301	2 ⁷³		∞	0.02s
tcrsig94	133	448	1124	2 ¹⁹⁴	$[13min - \infty]$		0.03s
egfr104	193	748	2356	2 ³²⁰			0.16s

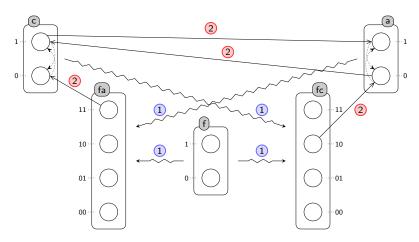

¹ LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

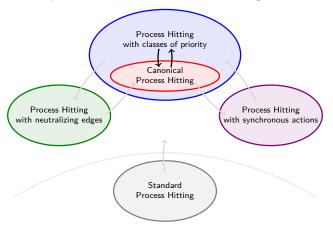

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009] egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

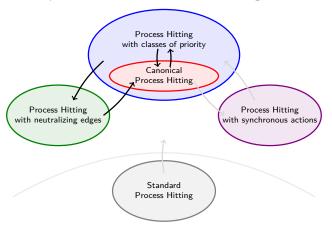

tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]

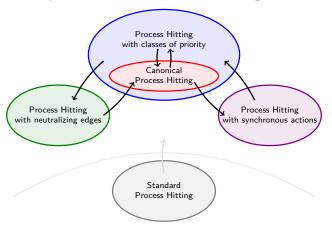

tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]

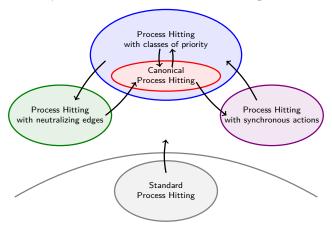

² TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

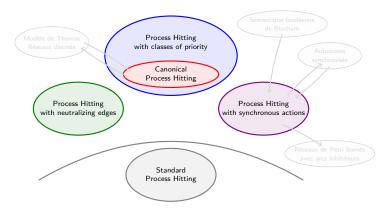


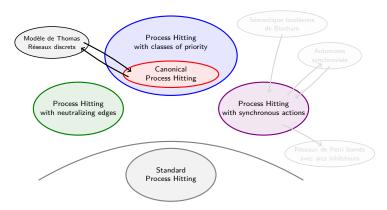


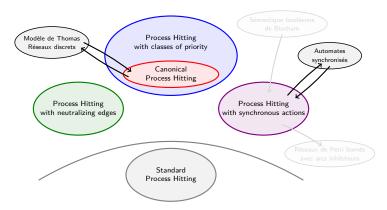

- → Same dynamics (with supplemental cooperative sorts)
- → The canonical form can be computed for all Process Hitting extensions, with classes of priorities, neutralizing edges or synchronous actions

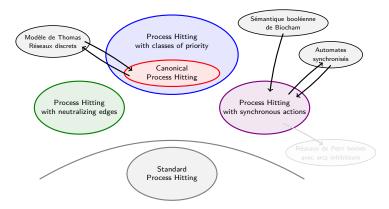

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

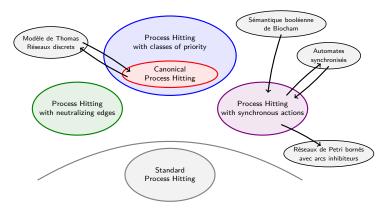

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation


- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation


- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation


- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation


- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham


- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

Translation To Thomas Modeling

[Folschette et al. in Computational Methods in Systems Biology, 2012]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- enumeration of all parametrizations compatible with the dynamics

Complexity:

Linear in the number of genes, Exponential in the number of regulators of one component

Translation To Thomas Modeling

[Folschette et al. in Computational Methods in Systems Biology, 2012]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- enumeration of all parametrizations compatible with the dynamics

Complexity:

Linear in the number of genes,

Exponential in the number of regulators of one component

Models				Inference the IG		Inference of parameters	
Name	Sorts	Processes	Actions	Duration	Edges	Durations	Parameters
egfr20	22	152	399	1s	50	1s	191
tcrsig40	14	156	301	1s	54	1s	143
tcrsig94	39	448	1124	13s	169	∞	2.10^{9}
egfr104	89	748	2356	4min	241	1min 30s	$1.10^6/2.10^6$

egfr20: Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009] egfr104: Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]

tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]

General Conclusion

Standard Process Hitting allows to represent biological regulatory networks in an **atomistic** fashion:

- Existing efficient static analysis
- But temporal shift issues
- · Limited modeling power

Extensions of the Process Hitting to improve the expressivity:

- Rectification of the temporal shift → Strictly higher expressivity
- Allows to abstract temporal parameters
- New links to other formalisms (Thomas, PN, etc.)

Static analysis of the Canonical Process Hitting:

- Efficient analysis of reachability properties
- · Applicable to the extensions at the cost of a translation
- New kind of property: simultaneous activation

Outlooks

New exploitation possibilities:

- Modeling and analysis of full databases
- Study of uncontrollable behaviors or punctual perturbations
- Research of interesting properties (attractors, oscillations, ...)

Improvement of the static analysis:

- Refining in order to reduce the non-conclusiveness
- New methods using by-products such as the local causality graph
- New properties to check (temporal logic, counters, ...)

Enrichment of the modeling power:

- · Dynamical classes of priorities
- Guarded actions or complex logic gates
- New model checking tools (Hoare logic, ...)

Collaborations

Participation to the ANR blanc project BioTempo (March 2011 - November 2014):

"Language, time representations and hybrid models for the analysis of incomplete models in molecular biology"

Task 3: Introduce synchronization and continuous time in chronological models: programming language, multi-clocks and hybrid systems

3 months PhD internship (March – May 2012): **National Institute of Informatics** (Tokyo, Japan) Invited in the team of **Katsumi Inque**

"Automated Reasoning and Hypothesis Finding for Systems Biology"

Partnership organized with AtlanSTIC Financial participation of Centrale Initiatives

Personal Contributions

Book chapter:

Paulevé, Chancellor, Folschette, Magnin, Roux:
 Analyzing Large Network Dynamics with Process Hitting,
 Logical Modeling of Biological Systems, août 2014

Conferences and workshops:

- Folschette, Paulevé, Magnin, Roux : Under-approximation of reachability in multivalued asynchronous networks, CS2Bio'13, Electronic Notes in Theoretical Computer Science, Vol. 299, 2013 sélectionné pour un numéro spécial de Theoretical Computer Science
- Folschette, Paulevé, Inoue, Magnin, Roux:
 Concretizing the process hitting into biological regulatory networks,
 CMSB'12, Lecture Notes in Computer Science, 2012
- Folschette, Paulevé, Inoue, Magnin, Roux:
 Abducing Biological Regulatory Networks from Process Hitting models, ECML-PKDD'12 / LDSSB'12, 2012

Current journal submissions:

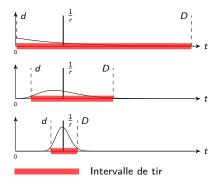
- Folschette, Paulevé, Magnin, Roux : Sufficient Conditions for Reachability in Automata Networks with Priorities, soumis à un numéro spécial de Theoretical Computer Science
- Folschette, Paulevé, Inoue, Magnin, Roux :
 Constructing Biological Regulatory Networks from Process Hitting models, en cours de révision pour Theoretical Computer Science
- Paulevé, Folschette, Magnin, Roux :
 Analyses statiques de la dynamique des réseaux d'automates indéterministes, soumis à un numéro spécial de Technique et Science Informatiques

Algebraic Modeling of the Multi-Scale Dynamics of BRNs

Thank you for your attention

Bibliography

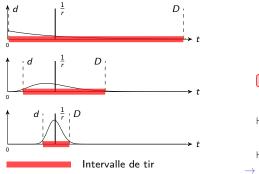
- Adrien Richard, Jean-Paul Comet, Gilles Bernot. R. Thomas' logical method, 2008. Invité à Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.
- Stuart A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), pages 437–467, 1969.
- René Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42(3), pages 563–585, 1973.
- Élisabeth Remy, Paul Ruet and Denis Thieffry. Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. *Advances in Applied Mathematics*, 41(3), pages 335–350. Elsevier. 2008.
- Adrien Richard, Jean-Paul Comet. Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics, 155(18), pages 2403–2413, 2007.
- Gilles Bernot, Jean-Paul Comet, Adrien Richard and Janine Guespin. Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. *Journal of Theoretical Biology*, 229(3), pages 339–347, Elsevier, 2004.
- Sohei Ito, Naoko Izumi, Shigeki Hagihara and Naoki Yonezaki. Qualitative analysis of gene regulatory networks by satisfiability checking of Linear Temporal Logic. In 2010 IEEE International Conference on *BioInformatics and BioEngineering*, pages 232–237, IEEE, 2010.

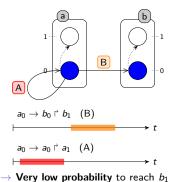

Bibliographie

- Loic Paulevé, Morgan Magnin, Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π -calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, Lecture Notes in Computer Science 6575, pages 171–191, 2011.
- Loïc Paulevé, Morgan Magnin, Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. *Mathematical Structures in Computer Science*, 2012.
- Paul François, Vincent Hakim, Eric D Siggia. Deriving structure from evolution: metazoan segmentation. *Molecular Systems Biology*, 3(1), 2007.
- Özgür Sahin et al. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology, 3(1), 2009.
- Regina Samaga et al. The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data. PLoS Computational Biology, 5(8), 2009.
- Steffen Klamt et al. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics, 7(1), 2006.
- Julio Saez-Rodriguez et al. A Logical Model Provides Insights into T Cell Receptor Signaling. PLoS Computational Biology, 3(8), 2007.

Stochastic Parameters

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

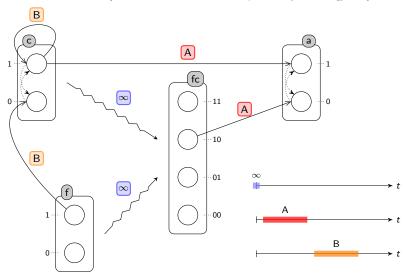

- Introduction of temporal properties
- Stochastic parameters (r, sa) equivalent to a **firing interval** [d; D]



Stochastic Parameters

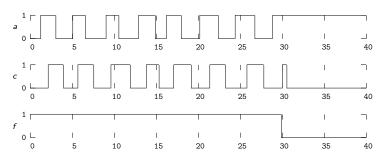
[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

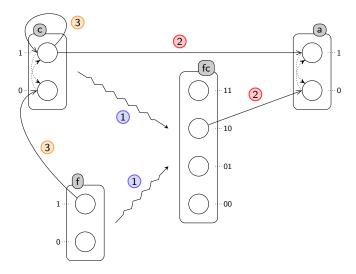
- Introduction of temporal properties
- Stochastic parameters (r, sa) equivalent to a **firing interval** [d; D]

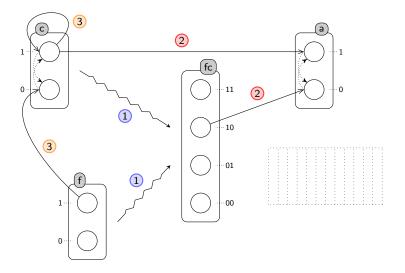


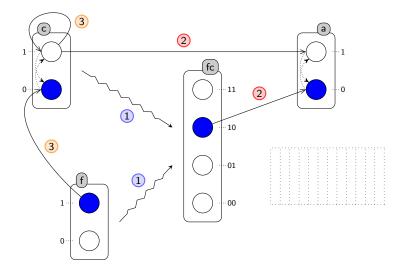
- Simulation → not formal
- Model-checking → High complexity for an acceptable precision

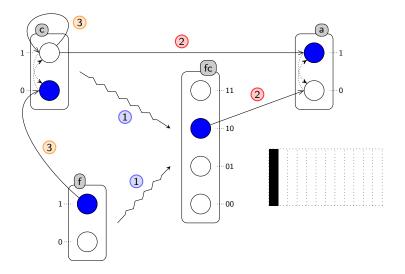
Use of Stochastic Parameters

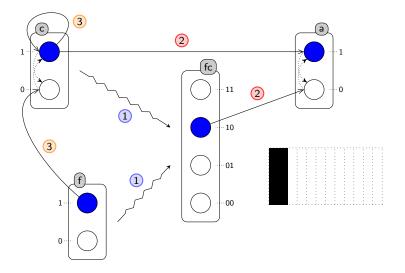

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

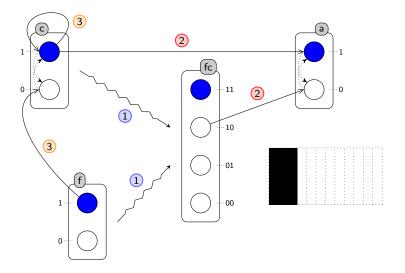

Temporal Simulation

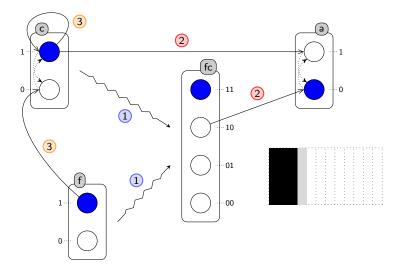

[Paulevé (PhD thesis), 2011]

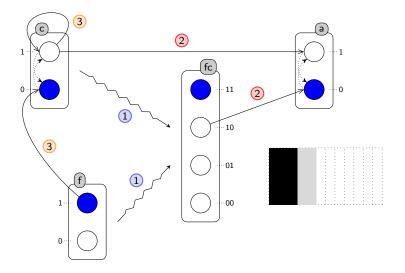

• Simulation with stochastic parameters:

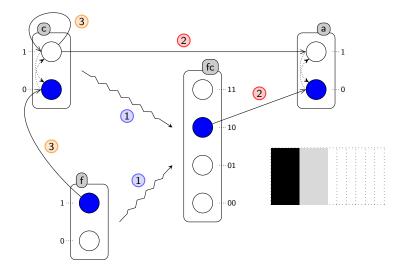


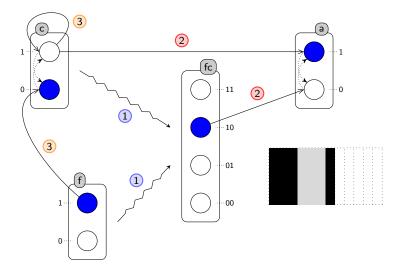

- Other possible analysis: stochastic model checkers (PRISM)
 - → But combinatoric explosion: PRISM fails for more than 5 components

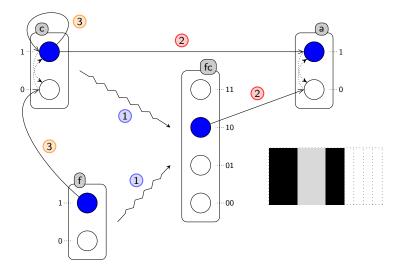


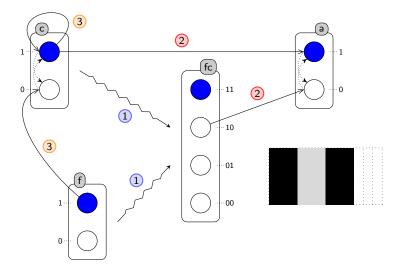


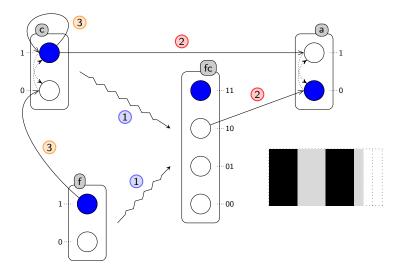


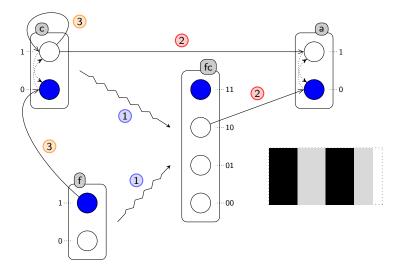


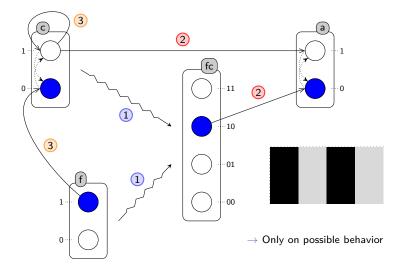


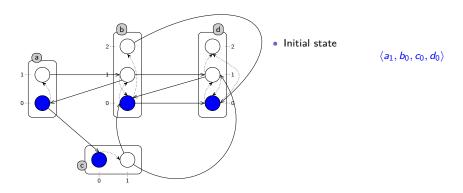


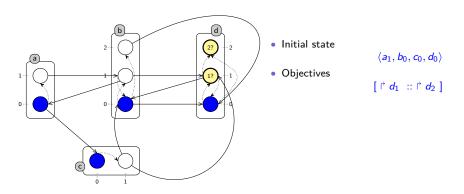


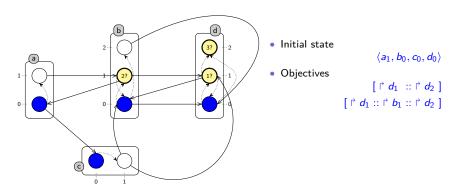


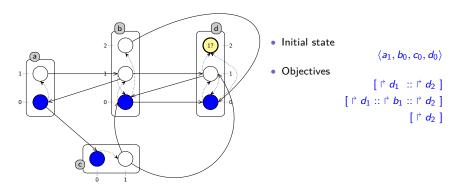


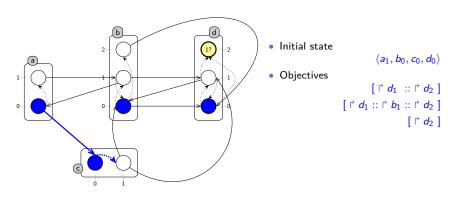




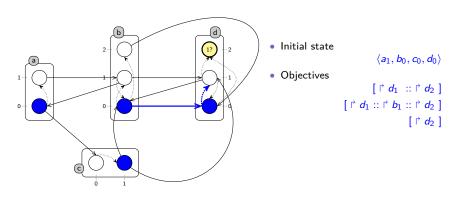



[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

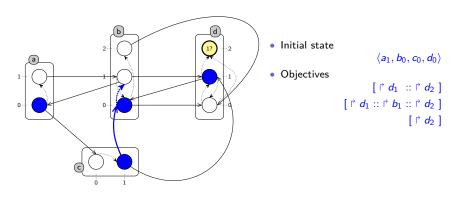

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]


[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

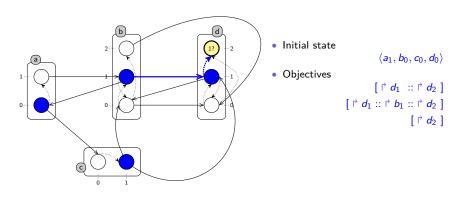
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]



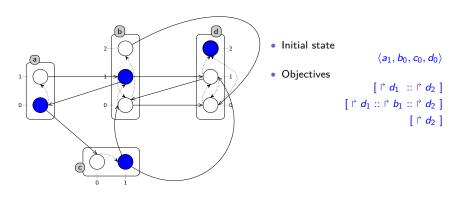
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]


$$ightarrow$$
 Concretization of the objective = scenario $a_0
ightarrow c_0
vert^{\circ} c_1 :: b_0
ightarrow d_0
vert^{\circ} d_1 :: c_1
ightarrow b_0
vert^{\circ} b_1 :: b_1
ightarrow d_1
vert^{\circ} d_2$

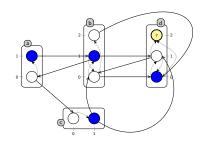
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]


$$ightarrow$$
 Concretization of the objective = scenario $a_0
ightarrow c_0
vert^{\flat} c_1 :: b_0
ightarrow d_0
vert^{\flat} d_1 :: c_1
ightarrow b_0
vert^{\flat} b_1 :: b_1
ightarrow d_1
vert^{\flat} d_2$

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

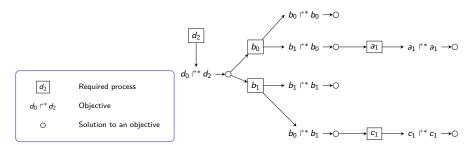

$$ightarrow$$
 Concretization of the objective = scenario $a_0
ightarrow c_0
vert^{\circ} c_1 :: b_0
ightarrow d_0
vert^{\circ} d_1 :: c_1
ightarrow b_0
vert^{\circ} b_1 :: b_1
ightarrow d_1
vert^{\circ} d_2$

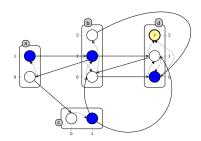
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]



$$ightarrow$$
 Concretization of the objective = scenario $a_0
ightarrow c_0
vert^{\circ} c_1 :: b_0
ightarrow d_0
vert^{\circ} d_1 :: c_1
ightarrow b_0
vert^{\circ} b_1 :: b_1
ightarrow d_1
vert^{\circ} d_2$

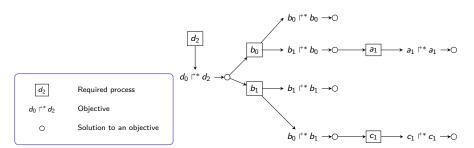
[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

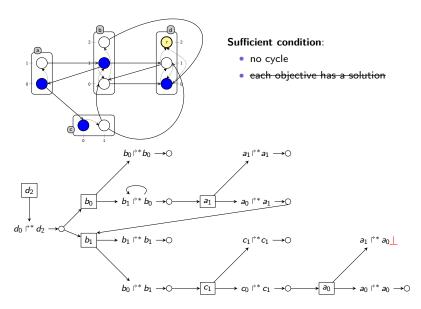


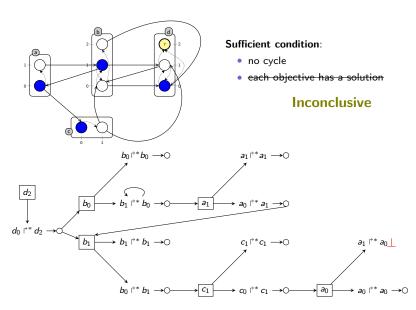

$$\rightarrow$$
 Concretization of the objective = scenario $a_0 \rightarrow c_0 \uparrow^{\dagger} c_1 :: b_0 \rightarrow d_0 \uparrow^{\dagger} d_1 :: c_1 \rightarrow b_0 \uparrow^{\dagger} b_1 :: b_1 \rightarrow d_1 \uparrow^{\dagger} d_2$

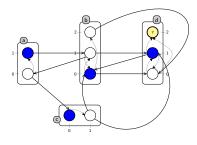
Sufficient condition:

- no cycle
- · each objective has a solution

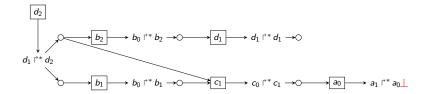


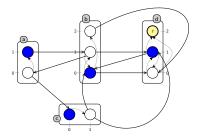



Sufficient condition:

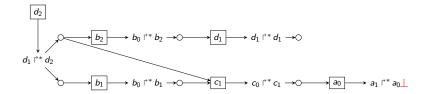

- no cycle
- · each objective has a solution

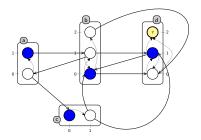
R is **true**





Necessary condition:

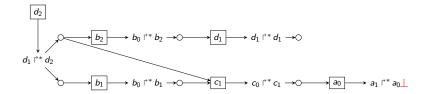


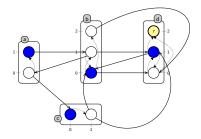


Necessary condition:

There exists a traversal with no cycle

- $\bullet \ \ \mathsf{objective} \to \mathsf{follow} \ \mathsf{one} \ \mathsf{solution}$
- ullet solution o follow all processes
- $\bullet \ \ \mathsf{process} \to \mathsf{follow} \ \mathsf{all} \ \mathsf{objectives}$

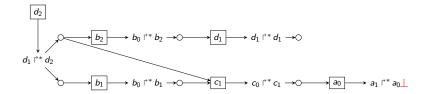


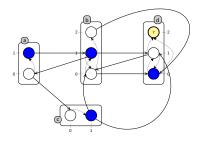


Necessary condition:

There exists a traversal with no cycle

- $\bullet \ \ \, \text{objective} \, \to \, \text{follow one solution}$
- $\bullet \ \ \mathsf{solution} \ \to \ \mathsf{follow} \ \ \mathsf{all} \ \ \mathsf{processes}$
- $\bullet \ \ \mathsf{process} \to \mathsf{follow} \ \mathsf{all} \ \mathsf{objectives}$

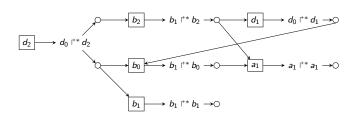


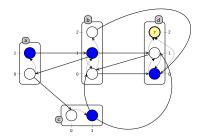

Necessary condition:

There exists a traversal with no cycle

- ullet objective o follow one solution
- ullet solution o follow all processes
- ullet process o follow all objectives

R is **false**

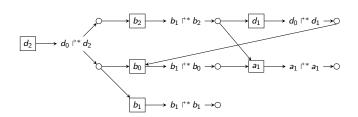




Necessary condition:

There exists a traversal with no cycle

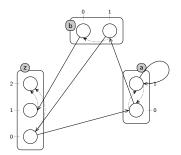
- $\bullet \ \ \mathsf{objective} \to \mathsf{follow} \ \mathsf{one} \ \mathsf{solution}$
- ullet solution o follow all processes
- $\bullet \ \ \mathsf{process} \to \mathsf{follow} \ \mathsf{all} \ \mathsf{objectives}$



Necessary condition:

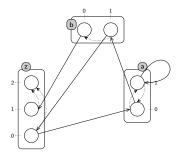
There exists a traversal with no cycle

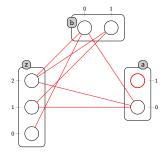
- ullet objective o follow one solution
- solution → follow all processes
- $\bullet \ \ \mathsf{process} \to \mathsf{follow} \ \mathsf{all} \ \mathsf{objectives}$


Inconclusive

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

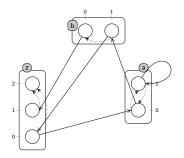

 \rightarrow avoid couples of processes bounded by an action

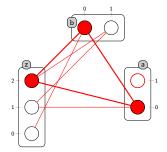


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

$Fixed\ point = state\ where\ no\ action\ can\ be\ fired$

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph

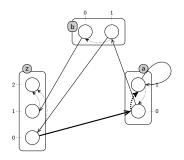


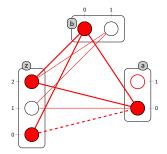


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- ightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

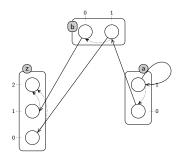


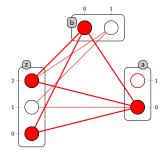


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

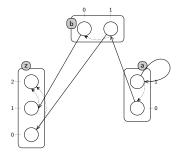


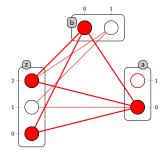


[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points





[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- → avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Exponential complexity w.r.t. the number of sorts