— CMSB'2012 —

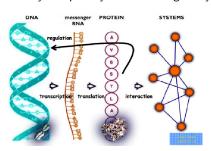
The 10th Conference on Computational Methods in Systems Biology

Concretizing the Process Hitting into Biological Regulatory Networks

Maxime FOLSCHETTE^{1,2}
maxime.folschette@irccyn.ec-nantes.fr
http://www.irccyn.ec-nantes.fr/~folschet/

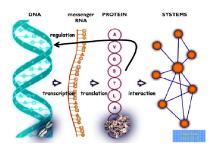
Joint work with: Loïc PAULEVÉ³, Katsumi INOUE², Morgan MAGNIN¹, Olivier ROUX¹

MeForBio / IRCCyN / École Centrale de Nantes (Nantes, France) morgan.magnin@irccyn.ec-nantes.fr olivier.roux@irccyn.ec-nantes.fr

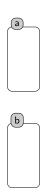

² Inoue Laboratory / NII / Sokendai University (Tokyo, Japan) ki@nii.ac.ip

3 AMIB / LIX / École Polytechnique (Palaiseau, France) pauleve@lix.polytechnique.fr

AtlanSTIC sojourn financed by NII & Centrale Initiatives


Context and Aims

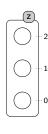
Algebraic modeling to study complex dynamical biological systems:



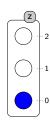
Context and Aims

Algebraic modeling to study complex dynamical biological systems:

- Historical model: Biological Regulatory Network (René Thomas)
- New developed model: Process Hitting
- \Rightarrow Allow efficient translation from Process Hitting to BRN \Leftarrow

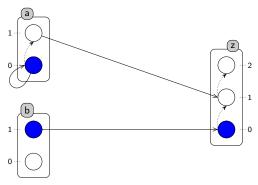


Sorts: components a, b, z



Sorts: components a, b, z

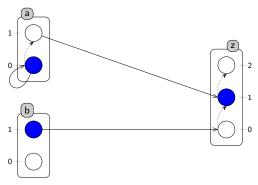
Processes: local states / levels of expression



Sorts: components a, b, z

Processes: local states / levels of expression z_0 , z_1 , z_2

States: sets of active processes $\langle a_0, b_1, z_0 \rangle$

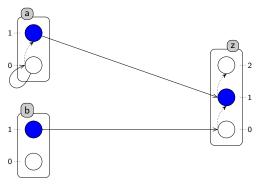


Sorts: components a, b, z

Processes: local states / levels of expression z_0 , z_1 , z_2

States: sets of active processes $\langle a_0, b_1, z_0 \rangle$

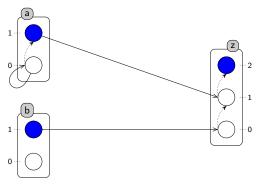
Actions: dynamics $b_1 \rightarrow z_0
ightharpoonup z_1$, $a_0 \rightarrow a_0
ightharpoonup a_1$, $a_1 \rightarrow z_1
ightharpoonup z_2$



Sorts: components a, b, z

Processes: local states / levels of expression z_0 , z_1 , z_2

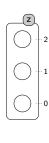
States: sets of active processes $\langle a_0, b_1, z_1 \rangle$


Actions: dynamics $b_1 \rightarrow z_0
vert^{\prime} z_1$, $a_0 \rightarrow a_0
vert^{\prime} a_1$, $a_1 \rightarrow z_1
vert^{\prime} z_2$

Sorts: components a, b, z

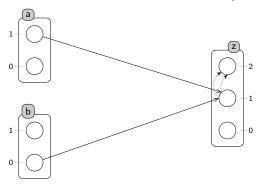
Processes: local states / levels of expression z_0 , z_1 , z_2

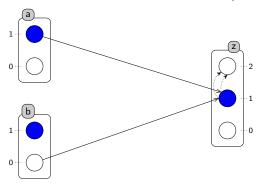
States: sets of active processes $\langle a_1, b_1, z_1 \rangle$


Sorts: components a, b, z

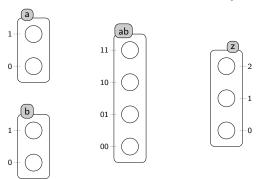
Processes: local states / levels of expression z_0 , z_1 , z_2

States: sets of active processes $\langle a_1, b_1, z_2 \rangle$

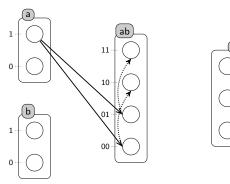




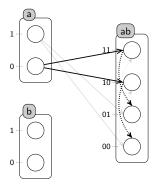
How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

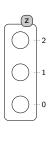

$$\wedge b_0 \rightarrow z_1 \upharpoonright z_2$$

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

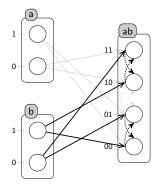


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

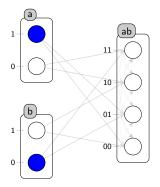


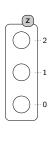

How to introduce some **cooperation** between sorts?

 $a_1 \wedge b_0 \rightarrow z_1 \stackrel{\rightarrow}{\vdash} z_2$

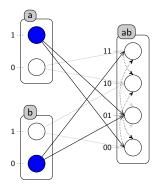


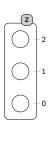
How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$




How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \stackrel{?}{\vdash} z_2$

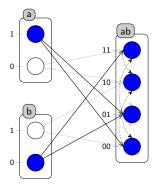


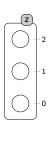


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Solution: a cooperative sort

Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

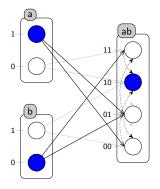


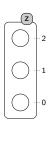


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Solution: a cooperative sort

Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

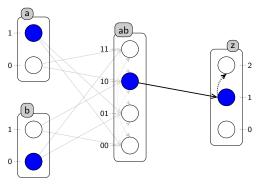




How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Solution: a cooperative sort

Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$



How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

$$a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$$

Solution: a cooperative sort


Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

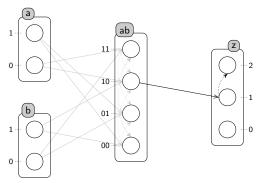
Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$


Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

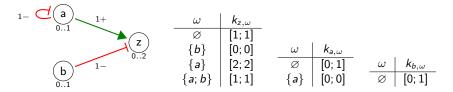
Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$

Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

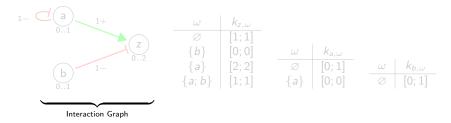


How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

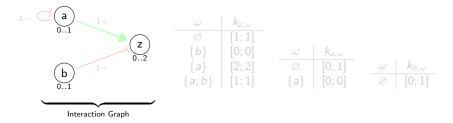
Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$


Constraint: each configuration is represented by one process $\langle a_1,b_0\rangle\Rightarrow ab_{10}$

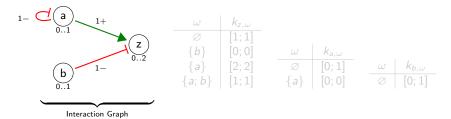
Advantage: regular sort; drawbacks: complexity, temporal shift



The Process Hitting framework:


- Dynamic modeling with an atomistic point of view
- Efficient static analysis (fixed points, reachability)
- Possible extensions (stochasticity, priorities)
- Useful for the study of large biological models

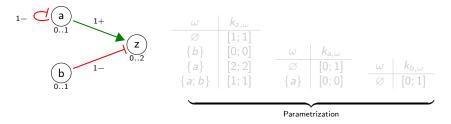
Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems


Interaction Graph: structure of the system (genes & interactions)

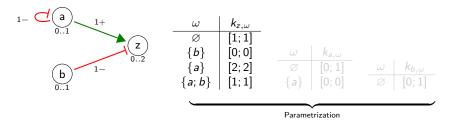
Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name a, b, z
- \rightarrow Possible values (levels of expression) 0..1, 0..2

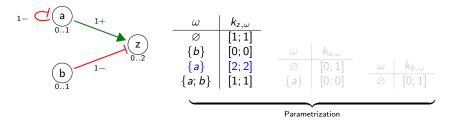

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

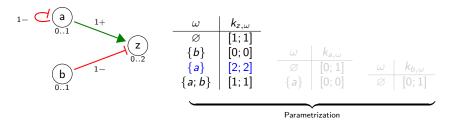

- \rightarrow Name a, b, z
- \rightarrow Possible values (levels of expression) 0..1, 0..2

Edges: interactions

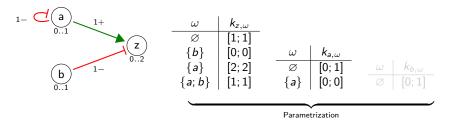
- \rightarrow Threshold
- \rightarrow Type (activation or inhibition) + / -



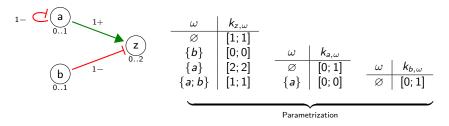
Parametrization: strength of the influences (evolution tendencies)


Parametrization: strength of the influences (evolution tendencies)

- ightarrow To any set of predecessors $\ \omega$
- ightarrow Corresponds a **parameter** $k_{x,\omega}$


Parametrization: strength of the influences (evolution tendencies)

- ightarrow To any set of predecessors
- ightarrow Corresponds a parameter $k_{x,\omega}$
- " $k_{z,\{a\}} = [2;2]$ " means: "z tends to [2;2] when $a \ge 1$ and b < 1"

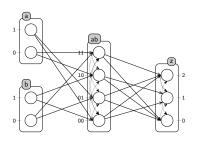

Parametrization: strength of the influences (evolution tendencies)

- ightarrow To any set of predecessors
- ightarrow Corresponds a **parameter** $k_{x,\omega}$
- " $k_{z,\{a\}} = [2;2]$ " means: "z tends to 2 when a = 1 and b = 0"


Parametrization: strength of the influences (evolution tendencies)

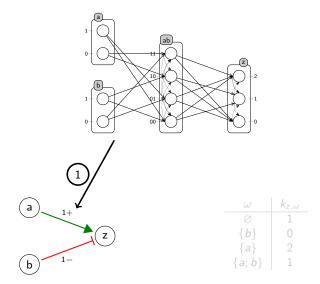
- ightarrow To any set of predecessors
- ightarrow Corresponds a **parameter** $k_{\mathsf{x},\omega}$
- " $k_{z,\{a\}} = [2;2]$ " means: "z tends to 2 when a = 1 and b = 0"

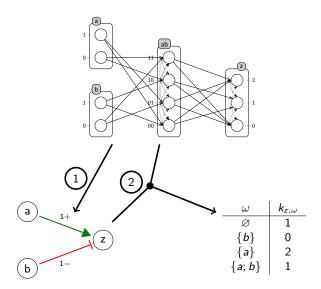
Parametrization: strength of the influences (evolution tendencies)


- ightarrow To any set of predecessors
- ightarrow Corresponds a **parameter** $k_{x,\omega}$
- " $k_{z,\{a\}}=[2;2]$ " means: "z tends to 2 when a=1 and b=0"

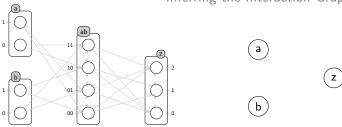
Biological Regulatory Network

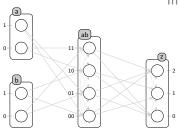
- → All needed information to run the model or study its dynamics:
 - Build the State Graph
 - Find reachability properties, fixed points, attractors
 - Other properties...
- → Strengths: well adapted for the study of biological systems
- → Drawbacks: inherent complexity; needs the full specification of cooperations

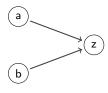

Inferring a BRN with Thomas' parameters

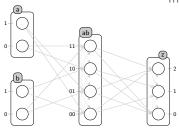


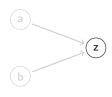
ω	$k_{z,\omega}$
Ø	1
{ <i>b</i> }	0
{a}	2
$\{a;b\}$	1


Inferring a BRN with Thomas' parameters

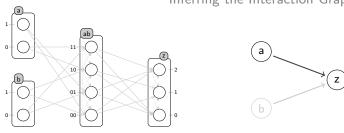

Inferring a BRN with Thomas' parameters

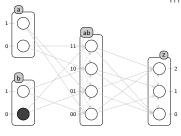


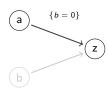




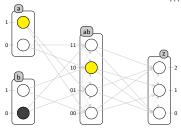
- Inputs: a Process Hitting model
- **Output:** An interaction graph with all information:
 - \rightarrow edges, signs and thresholds
- Difficulties: Process Hitting is more atomistic than BRNs
- Idea: Exhaustive search in all possible configurations

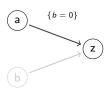




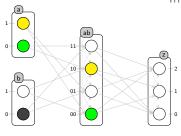

• For each gene [z]

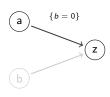
• For each gene [z], consider one possible regulator [a]

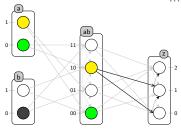


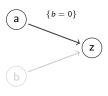


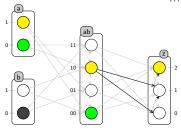
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$

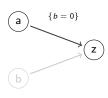


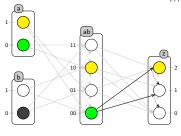


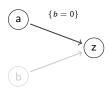

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a



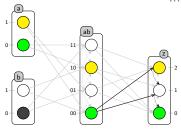


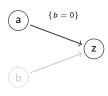

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a


- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a, determine the set of focal processes of z

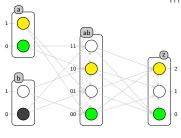


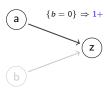
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a, determine the set of focal processes of z



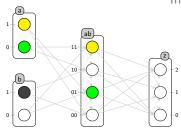


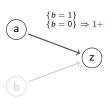
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a, determine the set of focal processes of z





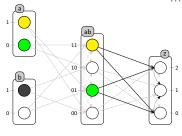
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a, determine the set of focal processes of z

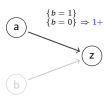




- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 0\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence

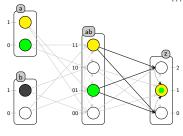
$$\{b=0\}
ightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$

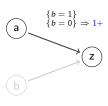




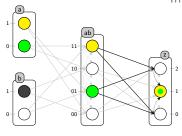
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 1\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence

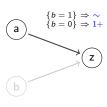
$$\{b=0\}
ightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$



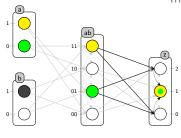


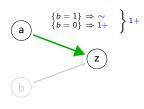
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 1\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence


$$\{b=0\}
ightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$



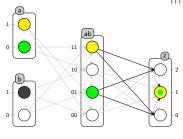
- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 1\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence

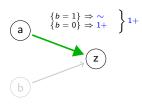

$$\{b=0\}
ightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$



- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 1\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence

$$\{b=0\} \rightarrow a_0 < a_1$$
 and $\{z_0\} \preccurlyeq \{z_2\} \Rightarrow$ activation (+) & threshold = 1 $\{b=1\} \rightarrow a_0 < a_1$ and $\{z_1\} = \{z_1\} \Rightarrow$ no influence (\sim)




- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 1\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence

$$\{b=0\} \rightarrow a_0 < a_1$$
 and $\{z_0\} \preccurlyeq \{z_2\} \Rightarrow$ activation (+) & threshold = 1 $\{b=1\} \rightarrow a_0 < a_1$ and $\{z_1\} = \{z_1\} \Rightarrow$ no influence (\sim)

• If possible, determine the general influence of a on z

- For each gene [z], consider one possible regulator [a]
- Consider a **configuration** of all other regulators $[\{b = 1\}]$
 - For each process of a, determine the set of focal processes of z
 - Comparing the sets of focal processes gives the influence

$$\{b=0\} \rightarrow a_0 < a_1 \text{ and } \{z_0\} \preccurlyeq \{z_2\} \Rightarrow \text{activation (+) \& threshold} = 1$$

 $\{b=1\} \rightarrow a_0 < a_1 \text{ and } \{z_1\} = \{z_1\} \Rightarrow \text{no influence (\sim)}$

• If possible, determine the general influence of a on z

Problematic cases:

 $\left. \begin{array}{l} \rightarrow \text{ No focal processes (cycle)} \\ \rightarrow \text{ Opposite influences } (+ \& -) \end{array} \right\} \Rightarrow \text{ Unsigned edge}$

Interaction Graph Inference

Programming in ASP:

- ullet Formal mathematical definitions o ASP
- Use of aggregates (enumeration = 1 active process per sort)

Interaction Graph Inference

Programming in ASP:

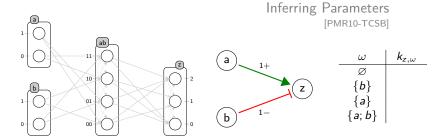
- Formal mathematical definitions → ASP
- Use of aggregates (enumeration = 1 active process per sort)

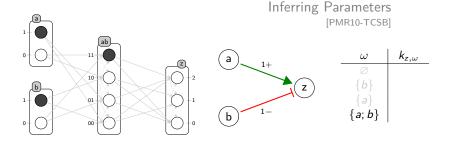
Calling ASP:

- Pint (existing OCaml library) to read Process Hitting models
 Free library + examples: http://processhitting.wordpress.com/
- OCaml to translate these models to an ASP description and parse the results
- Clingo to solve the description with the adequate program

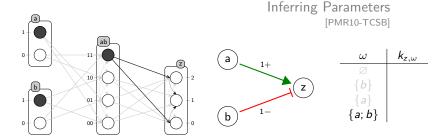
Interaction Graph Inference

Results: Very fast execution (personal laptop, 1.83GHz dual-core)

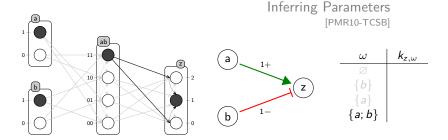

< 1s for 20 & 40 genes models [EGFR20 & TCRSIG40]

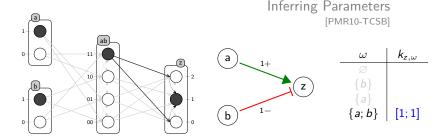

 \simeq 13s for a 94 genes model [TCRSIG94] \simeq 4min for a 104 genes model [EGFR104]

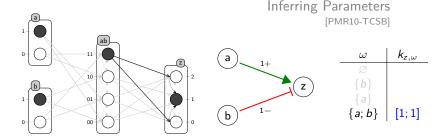
Model name	Model specifications			IG inference		
	Sorts	CS*	Processes	Actions	Time	Edges
[EGFR20]	20	22	152	399	< 1s	50
[TCRSIG40]	40	14	156	301	< 1s	54
[TCRSIG94]	94	39	448	1124	\simeq 13s	169
[EGFR104]	104	89	748	2356	\simeq 4min	241


^{*}CS = Cooperative sorts

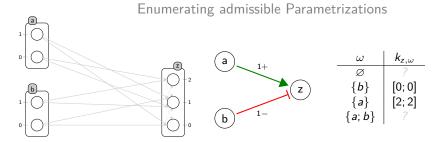
- [EGFR20]: Epidermal Growth Factor Receptor, by Özgür Sahin et al.
- [EGFR104]: Epidermal Growth Factor Receptor, by Regina Samaga et al.
- [TCRSIG40]: T-Cell Receptor Signaling, by Steffen Klamt et al.
- [TCRSIG94]: T-Cell Receptor Signaling, by Julio Saez-Rodriguez et al.



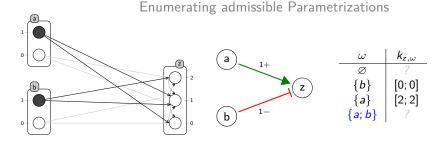

• For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$


- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of **focal processes** of the gene

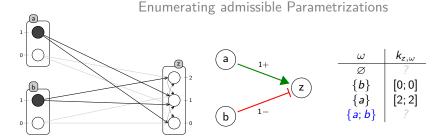
- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of **focal processes** of the gene $[\{z_1\}]$


- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of **focal processes** of the gene $[\{z_1\}]$
- Under some conditions, this set is the parameter: $k_{z,\{a,b\}} = [1;1]$

- For each gene [z] and each **configuration** of resources $[\omega = \{a; b\}]$
- Find the set of **focal processes** of the gene $[\{z_1\}]$
- Under some conditions, this set is the parameter: $k_{z,\{a,b\}} = [1;1]$

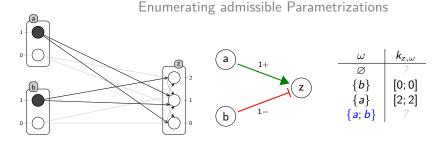

Problematic cases:

- → Behavior cannot be represented as a BRN
- → Lack of cooperation (no focal processes)


Inputs: The Process Hitting, the related Interaction Graph and the partially inferred Parametrization

Output: All admissible Parametrizations observing the dynamics

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics


• Incomplete cooperations may lead to a partial Parametrization $[\omega = \{a, b\}]$

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega = \{a, b\}]$
- Ambiguous cases may represent several dynamics

 $[k_{z,\{a,b\}} = [0;0]? [0;1]? [1;1]? [1;2]? [2;2]? [0;2]?]$

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred ParametrizationOutput: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega = \{a,b\}]$
- Ambiguous cases may represent several dynamics

$$[k_{z,\{a,b\}} = [0;0]? [0;1]? [1;1]? [1;2]? [2;2]? [0;2]?]$$

- \rightarrow Enumeration regarding:
 - Biological constraints
 - The dynamics of the Process Hitting

Parametrization Inference

Two steps:

- Parameters inference (partial)
- Admissible Parametrizations enumeration (total)

Parametrization Inference

Two steps:

- Parameters inference (partial)
- Admissible Parametrizations enumeration (total)

Results:

- Very fast execution for parameters inference
 - < 1s for the 20 & 40 genes models [EGFR20 & TCRSIG40]
 - \simeq 1min 30s for the 104 genes models [EGFR104]
- Admissible Parametrizations enumeration

After one cooperation removal:

- \simeq 4s to find 42 admissible Parametrizations [TCRSIG40]
- \simeq 20s to find 129 admissible Parametrizations [EGFR20]

ASP is convenient to handle enumeration (cardinalities) and filter only admissible answers (constraints)

Summary & Future work

- Inference of the complete Interaction Graph
 - → Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
 - → Exhaustive approach to find the necessary parameters
- Enumerate all full & admissible Parametrizations
 - ightarrow Exhaustive approach to find only relevant answers
- Complexity: linear in the number of genes,
 exponential in the number of regulators of one gene

Summary & Future work

- Inference of the complete Interaction Graph
 - → Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
 - → Exhaustive approach to find the necessary parameters
- Enumerate all full & admissible Parametrizations
 - \rightarrow Exhaustive approach to find only relevant answers
- Complexity: linear in the number of genes,
 exponential in the number of regulators of one gene
- Concretize into more expressive BRN representations
 - → Tackle with **unsigned edges** (problematic cases)
 - \rightarrow Use multiplexes to decrease the size of Parametrizations
- Use projections to remove cooperative sorts
 - \rightarrow Make actions independent
 - → Drop inference complexity?

Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas

- → New formal link between the two models
- → More **visibility** to the Process Hitting

Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas

- → New formal link between the two models.
- → More visibility to the Process Hitting

Using ASP

- → Tackles with complexity/combinatorial explosion
- → Allows efficient **exhaustive** search & enumeration

A multi-team topic

Inoue Laboratory (NII, Sokendai): Constraint Programming, Systems Biology MeForBio (IRCCyN, ÉCN): Formal Methods for Bioinformatics AMIB (LIX, Polytechnique): Algorithms and Models for Integrative Biology

Katsumi INOUF Professor & team leader

Post-doc

Maxime FOLSCHETTE $\simeq 2^{nd}$ year PhD student

Olivier ROUX Professor & team leader

Morgan MAGNIN Associate professor

AMIB

Maxime FOI SCHETTE 16/17 CMSB'2012 - 2012/10/04

Bibliography

- [Paulevé11] Loïc Paulevé. PhD thesis: Modélisation, Simulation et Vérification des Grands Réseaux de Régulation Biologique, October 2011, Nantes, France
- [PRM10-TCSB] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π -calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, volume 6575 of Lecture Notes in Computer Science, 171-191. Springer Berlin/Heidelberg, 2011.
- [PMR12-MSCS] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science. in press. 2012.
- [RCB08] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. *R. Thomas' logical method*, 2008. Invited at Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.

Thank you