Advances in Systems and Synthetic Biology Modelling Complex Biological Systems in the Context of Genomics Thematic Research School 2013

— Student workshop —

Introduction to the Process Hitting and inference of its underlying Biological Regulatory Network

Maxime FOLSCHETTE

MeForBio / IRCCyN / École Centrale de Nantes (Nantes, France) maxime.folschette@irccyn.ec-nantes.fr <http://www.irccyn.ec-nantes.fr/~folschet/>

Joint work with: Loïc PAULEVÉ, Katsumi INOUE, Morgan MAGNIN, Olivier ROUX

Context and Aims

MeForBio team: Algebraic modeling to study complex dynamical biological systems

Context and Aims

MeForBio team: Algebraic modeling to study complex dynamical biological systems

- 1) Two main models
	- Historical model: **Biological Regulatory Network (René Thomas)**
	- New developed model: **Process Hitting**
- 2) Allow efficient translation from Process Hitting to BRN

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / levels of expression z_0 , z_1 , z_2

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / levels of expression z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_0, b_1, z_0 \rangle$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / levels of expression z_0 , z_1 , z_2 **States**: sets of active processes $\langle a_0, b_1, z_0 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / levels of expression z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_0, b_1, z_1 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / levels of expression z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_1, b_1, z_1 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / levels of expression z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_1, b_1, z_2 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \wedge z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations P and Q, where $P \Rightarrow R \Rightarrow Q$:

Polynomial w.r.t. the number of sorts and exponential w.r.t. the number of processes in each sort

 \rightarrow Efficient for big models with few levels of expression

Implementation & Execution times

PINT**: Existing free OCaml library**

- \rightarrow Compiler + tools for Process Hitting models
- \rightarrow Documentation & examples: <http://processhitting.wordpress.com/>

Implementation & Execution times

PINT**: Existing free OCaml library**

- \rightarrow Compiler + tools for Process Hitting models
- \rightarrow Documentation & examples: <http://processhitting.wordpress.com/>

Computation time for various reachability analyses:

 $^{\rm 1}$ Inria Paris-Rocquencourt/Contraintes

² LIP6/Move

egfr20: [Epidermal Growth Factor Receptor, by Özgür Sahin et al.] **egfr104:** [Epidermal Growth Factor Receptor, by Regina Samaga et al.] **tcrsig40**: [T-Cell Receptor Signaling, by Steffen Klamt et al.] **tcrsig94**: [T-Cell Receptor Signaling, by Julio Saez-Rodriguez et al.]

The Process Hitting modeling

- **Dynamic** modeling with an **atomistic** point of view
	- \rightarrow Independent actions
	- \rightarrow Cooperation modeled with cooperative sorts
- Efficient **static analysis**
	- \rightarrow Reachability of a process can be computed in **polynomial time** in the number of sorts
- Useful for the study of **large biological models**
	- \rightarrow Up to hundreds of sorts
- (Future) extensions
	- \rightarrow Actions with priorities
	- \rightarrow Continuous time with clocks?

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Proposed by René Thomas in 1973, several extensions since then

Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Interaction Graph: structure of the system (genes & interactions)

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name a, b, z
- → Possible values (levels of expression) 0*..*1, 0*..*2

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name a, b, z
- → Possible values (levels of expression) 0*..*1, 0*..*2

Edges: interactions

- \rightarrow Threshold 1
- \rightarrow Type (activation or inhibition) + / –

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

- → To any **influences of predecessors** *ω*
- → Corresponds a **parameter** kx*,ω*

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

- → To any **influences of predecessors** *ω*
- → Corresponds a **parameter** kx*,ω*

 ${}^{\omega}k_{z,\{a^+,b^+\}} = 2"$ means: "z tends to 2 when $a \ge 1$ and $b < 1"$

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

- \rightarrow All needed information to run the model or study its dynamics:
	- Build the State Graph
	- Find reachability properties, fixed points, attractors
	- Other properties...
- \rightarrow **Strengths**: well adapted for the study of biological systems
- \rightarrow **Drawbacks**: inherent complexity; needs the full specification of cooperations

[Introduction to the PH and inference of its underlying BRN](#page-0-0) ◦ [Translating a Process Hitting into a BRN](#page-51-0)

Inferring a BRN with Thomas' parameters

[Introduction to the PH and inference of its underlying BRN](#page-0-0) ◦ [Translating a Process Hitting into a BRN](#page-52-0)

Inferring a BRN with Thomas' parameters

[Introduction to the PH and inference of its underlying BRN](#page-0-0) ◦ [Translating a Process Hitting into a BRN](#page-53-0)

Inferring a BRN with Thomas' parameters

Inferring the Interaction Graph

[Folschette, Paulevé, Inoue, Magnin, Roux in Computational Methods in Systems Biology, 2012]

a

→ **Exhaustive search in all possible configurations**

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \rvert^2 a_1 \Rightarrow z_0 \rvert^2 z_2) \Rightarrow$ activation $(+)$ & threshold = 1.

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \rvert^2 a_1 \Rightarrow z_0 \rvert^2 z_2) \Rightarrow$ activation $(+)$ & threshold = 1.
- 4. Iterate

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \rvert^2 a_1 \Rightarrow z_0 \rvert^2 z_2) \Rightarrow$ activation $(+)$ & threshold = 1.
- 4. Iterate

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \rvert^2 a_1 \Rightarrow z_0 \rvert^2 z_2) \Rightarrow$ activation $(+)$ & threshold = 1.
- 4. Iterate

- → **Exhaustive search in all possible configurations**
- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \rceil a_1 \Rightarrow a_0 \rceil a_2) \Rightarrow$ activation $(+)$ & threshold = 1.
- 4. Iterate and conclude globally.

→ **Exhaustive search in all possible configurations**

- 1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \rceil a_1 \Rightarrow a_0 \rceil a_2) \Rightarrow$ activation $(+)$ & threshold = 1.
- 4. Iterate and conclude globally.

Problematic cases:

- \rightarrow No focal processes (cycle) \rightarrow No focal processes (cycle)
 \rightarrow Opposite influences (+ & −) $\left.\rule{0pt}{3.5mm}\right\} \Rightarrow$ Unsigned edge
-

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**.

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}}=1]$
[Introduction to the PH and inference of its underlying BRN](#page-0-0) ○ [Translating a Process Hitting into a BRN](#page-72-0) ○ [Parametrization Inference](#page-72-0)

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$

Inconclusive cases:

- Behavior cannot be represented as a BRN
- – Lack of cooperation (no focal processes)

[Introduction to the PH and inference of its underlying BRN](#page-0-0) ○ [Translating a Process Hitting into a BRN](#page-73-0) ○ [Parametrization Inference](#page-73-0)

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $\begin{bmatrix} k_{z, \{a^+, b^-\}} = 1 \end{bmatrix}$

Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)
- 2. If some parameters could not be inferred, enumerate all admissible parametrizations, regarding:
	- Biological constraints
	- The dynamics of the Process Hitting

[kz*,*{a+*,*b−} ∈ {0; 1; 2}; kz*,*{a−*,*b+} ∈ {0; 1; 2}]

Implementation

Workflow:

- Read and translate the models with **OCaml**
	- \rightarrow Integrated to PINT
- Express the problem in **ASP** (logic programming)
	- → Solved with **Clingo** (**Gringo** + **Clasp**)

Complexity: linear in the number of genes, exponential in the number of regulators of one gene

Implementation

Workflow:

- Read and translate the models with **OCaml**
	- \rightarrow Integrated to PINT
- Express the problem in **ASP** (logic programming)
	- → Solved with **Clingo** (**Gringo** + **Clasp**)

Complexity: linear in the number of genes, exponential in the number of regulators of one gene

Cooperative sorts $P =$ Processes $A =$ Actions

egfr20: [Epidermal Growth Factor Receptor, by Özgür Sahin et al.] **egfr104**: [Epidermal Growth Factor Receptor, by Regina Samaga et al.] **tcrsig40**: [T-Cell Receptor Signaling, by Steffen Klamt et al.] **tcrsig94**: [T-Cell Receptor Signaling, by Julio Saez-Rodriguez et al.]

Summary

- 1. Inference of the **complete Interaction Graph**
- 2. Inference of the **possibly partial Parametrization**
- 3. Enumerate all full & **admissible Parametrizations**
	- \rightarrow Exhaustive approaches

Summary

- 1. Inference of the **complete Interaction Graph**
- 2. Inference of the **possibly partial Parametrization**
- 3. Enumerate all full & **admissible Parametrizations**
	- \rightarrow Exhaustive approaches

Conclusion

Existing translation: René Thomas \rightsquigarrow Process Hitting New translation: Process Hitting \rightsquigarrow René Thomas

- \rightarrow New **formal link** between the two models
- → More **visibility** to the Process Hitting

Joint work

Inoue Laboratory: National Institute of Informatics / Sokendai / Tokyo (Japan) **MeForBio**: IRCCyN / École Centrale de Nantes / Nantes (France) **BISON**: Institut für Automatik / ETH / Zürich (Switzerland)

Katsumi INOUE Professor & team leader

 $\overline{\mathcal{L}}$ **Inoue Laboratory**

 \mathcal{L}

 \int

 $\overline{\mathcal{L}}$ **BISON**

 \mathcal{L}

 \int

 \mathcal{L}

 \int

Loïc PAULEVÉ Post-doc

Olivier ROUX Morgan MAGNIN Maxime FOLSCHETTE Professor & team leader Associate professor 2nd year PhD student

 $\overline{\mathcal{L}}$ **MeForBio**

? **Sufficient condition**:

- no cycle
- • each objective has a solution

? **Sufficient condition**:

- no cycle
- each objective has a solution

R is **true**

? **Sufficient condition**:

- no cycle
- each objective has a solution

? **Sufficient condition**:

- no cycle
- each objective has a solution

Inconclusive

Over-approximation

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- • process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective → follow one solution
- solution \rightarrow follow all processes
- • process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective → follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is **false**

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- • process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

 \rightarrow avoid couples of processes bounded by an action

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Exponential complexity w.r.t. the number of sorts

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- Introduces time features
- Parameters: either (r*,* sa), or the **firing interval** [d; D].

[Introduction to the PH and inference of its underlying BRN](#page-0-0) ○ [Annex: Stochastic Features](#page-97-0)

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- Introduces time features
- Parameters: either (r, sa) , or the **firing interval** $[d; D]$.

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

• Introduces time features

• Parameters: either (r, sa) , or the **firing interval** $[d; D]$.

 $\rightarrow b_1$ reached with a **very low probability**.

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

• Introduces time features

• Parameters: either (r, sa) , or the **firing interval** $[d; D]$.

 $\rightarrow b_1$ reached with a **very low probability**.

- \rightarrow Tests by simulation
- \rightarrow Model-checking