Advances in Systems and Synthetic Biology Modelling Complex Biological Systems in the Context of Genomics Thematic Research School 2013

- Student workshop -

Introduction to the Process Hitting and inference of its underlying Biological Regulatory Network

Maxime FOLSCHETTE

MeForBio / IRCCyN / École Centrale de Nantes (Nantes, France) maxime.folschette@irccyn.ec-nantes.fr http://www.irccyn.ec-nantes.fr/-folschet/

Joint work with:

Loïc PAULEVÉ, Katsumi INOUE, Morgan MAGNIN, Olivier ROUX

Context and Aims

MeForBio team: Algebraic modeling to study complex dynamical biological systems

Context and Aims

MeForBio team: Algebraic modeling to study complex dynamical biological systems

- 1) Two main models
 - Historical model: Biological Regulatory Network (René Thomas)
 - New developed model: Process Hitting
- 2) Allow efficient translation from Process Hitting to BRN

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes**: local states / levels of expression z_0 , z_1 , z_2

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

 $\begin{array}{ll} \text{Sorts: components} & a, b, z \\ \text{Processes: local states / levels of expression} & z_0, z_1, z_2 \\ \text{States: sets of active processes} & \langle a_0, b_1, z_0 \rangle \\ \text{Actions: dynamics} & b_1 \rightarrow z_0 \ \vec{r} \ z_1, \ a_0 \rightarrow a_0 \ \vec{r} \ a_1, \ a_1 \rightarrow z_1 \ \vec{r} \ z_2 \end{array}$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: componentsa, b, zProcesses: local states / levels of expression z_0, z_1, z_2 States: sets of active processes $\langle a_0, b_1, z_1 \rangle$ Actions: dynamics $b_1 \rightarrow z_0 \uparrow^2 z_1, a_0 \rightarrow a_0 \uparrow^2 a_1, a_1 \rightarrow z_1 \uparrow^2 z_2$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: componentsa, b, zProcesses: local states / levels of expression z_0, z_1, z_2 States: sets of active processes $\langle a_1, b_1, z_1 \rangle$ Actions: dynamics $b_1 \rightarrow z_0 \ \vec{r} \ z_1, a_0 \rightarrow a_0 \ \vec{r} \ a_1, a_1 \rightarrow z_1 \ \vec{r} \ z_2$

The Process Hitting modeling

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes:** local states / levels of expression *z*₀, *z*₁, *z*₂ **States:** sets of active processes $\langle a_1, b_1, z_2 \rangle$ **Actions:** dynamics $b_1 \rightarrow z_0 \uparrow^z z_1$, $a_0 \rightarrow a_0 \uparrow^z a_1$, $a_1 \rightarrow z_1 \uparrow^z z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \downarrow^z z_2$ Solution: a **cooperative sort** abConstraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \downarrow z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \not z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$

Adding cooperations

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \not z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: each configuration is represented by one process $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- ightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Over- and Under-approximations

[Paulevé, Magnin, Roux in Mathematical Structures in Computer Science, 2012]

Static analysis by abstractions:

- \rightarrow Directly checking an objective sequence R is hard
- \rightarrow Rather check the approximations *P* and *Q*, where *P* \Rightarrow *R* \Rightarrow *Q*:

Polynomial w.r.t. the number of sorts and exponential w.r.t. the number of processes in each sort

 \rightarrow Efficient for big models with few levels of expression

Implementation & Execution times

PINT: Existing free OCaml library

- \rightarrow Compiler + tools for Process Hitting models
- \rightarrow Documentation & examples: http://processhitting.wordpress.com/

Implementation & Execution times

PINT : Existing free OCaml library

- \rightarrow Compiler + tools for Process Hitting models
- \rightarrow Documentation & examples: http://processhitting.wordpress.com/

Model	Sorts	Procs	Actions	States	Biocham ¹	libddd ²	PINT
egfr20	35	196	670	2 ⁶⁴	[3s−∞]	[1s–150s]	0.007s
tcrsig40	54	156	301	2 ⁷³	[1s−∞]	[0.6s–∞]	0.004s
tcrsig94	133	448	1124	2 ¹⁹⁴	∞	∞	0.030s
egfr104	193	748	2356	2 ³²⁰	∞	∞	0.050s

Computation time for various reachability analyses:

 1 Inria Paris-Rocquencourt/Contraintes

² LIP6/Move

egfr20: [Epidermal Growth Factor Receptor, by Özgür Sahin *et al.*] egfr104: [Epidermal Growth Factor Receptor, by Regina Samaga *et al.*] tcrsig40: [T-Cell Receptor Signaling, by Steffen Klamt *et al.*] tcrsig94: [T-Cell Receptor Signaling, by Julio Saez-Rodriguez *et al.*]

The Process Hitting modeling

• Dynamic modeling with an atomistic point of view

- \rightarrow Independent actions
- \rightarrow Cooperation modeled with cooperative sorts
- Efficient static analysis
 - \rightarrow Reachability of a process can be computed in polynomial time in the number of sorts
- Useful for the study of large biological models
 - \rightarrow Up to hundreds of sorts
- (Future) extensions
 - ightarrow Actions with priorities
 - \rightarrow Continuous time with clocks?

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Proposed by René Thomas in 1973, several extensions since then

Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Interaction Graph: structure of the system (genes & interactions)

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name *a*, *b*, *z*
- \rightarrow Possible values (levels of expression) 0..1, 0..2

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

- \rightarrow Name **a**, **b**, **z**
- ightarrow Possible values (levels of expression) 0..1, 0..2

Edges: interactions

- \rightarrow Threshold 1
- \rightarrow Type (activation or inhibition) ~~+ / -

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

- ightarrow To any influences of predecessors ω
- ightarrow Corresponds a parameter $k_{x,\omega}$

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

- ightarrow To any influences of predecessors ω
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$

" $k_{z,\{a^+,b^+\}} = 2$ " means: "z tends to 2 when $a \ge 1$ and b < 1"

Biological Regulatory Network (Thomas' modeling)

[Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Biological Regulatory Network

- \rightarrow All needed information to run the model or study its dynamics:
 - Build the State Graph
 - · Find reachability properties, fixed points, attractors
 - Other properties...
- \rightarrow **Strengths**: well adapted for the study of biological systems
- → **Drawbacks**: inherent complexity; needs the full specification of cooperations

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring the Interaction Graph [Folschette, Paulevé, Inoue, Magnin, Roux in Computational Methods in Systems Biology, 2012]

 \rightarrow Exhaustive search in all possible configurations

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the **focal processes**.

- ightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the focal processes.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$

- ightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the focal processes.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow activation (+) \& threshold = 1.$
- 4. Iterate

- ightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the focal processes.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow activation (+) \& threshold = 1.$
- 4. Iterate

- ightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the focal processes.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$
- 4. Iterate

- ightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of this regulator $[a_0, a_1]$ and watch the focal processes.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$
- 4. Iterate and conclude globally.

\rightarrow Exhaustive search in all possible configurations

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- Change the active process of this regulator $[a_0, a_1]$ and watch the focal processes. 2.
- Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \lor z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$ 3.
- 4. Iterate and conclude globally.

Problematic cases:

- \rightarrow No focal processes (cycle) \rightarrow Opposite influences (+ & -) $\} \Rightarrow$ Unsigned edge

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**.

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$ Introduction to the PH and inference of its underlying BRN o Translating a Process Hitting into a BRN o Parametrization Inference

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$

Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)

Introduction to the PH and inference of its underlying BRN o Translating a Process Hitting into a BRN o Parametrization Inference

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z}]_{z^+, b^-} = 1$

Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)
- 2. If some parameters could not be inferred, enumerate all admissible parametrizations, regarding:
 - Biological constraints
 - The dynamics of the Process Hitting

 $[k_{z,\{a^+,b^-\}} \in \{0;1;2\}; \ k_{z,\{a^-,b^+\}} \in \{0;1;2\}]$

Implementation

Workflow:

- Read and translate the models with OCaml
 - \rightarrow Integrated to $\rm PINT$
- Express the problem in ASP (logic programming)
 - \rightarrow Solved with Clingo (Gringo + Clasp)

Complexity: linear in the number of genes, exponential in the number of regulators of one gene

Implementation

Workflow:

- Read and translate the models with OCaml
 - \rightarrow Integrated to $\rm PINT$
- Express the problem in ASP (logic programming)
 - \rightarrow Solved with Clingo (Gringo + Clasp)

Complexity: linear in the number of genes, exponential in the number of regulators of one gene

Model specifications				IG inference		Parameters inference		
Name	S+CS	Р	A	Δt	Edges	Δt	Parameters	
egfr20	20 +22	152	399	1s	50	1s	191	
tcrsig40	40+14	156	301	1s	54	1s	143	
tcrsig94	94 +39	448	1124	13s	169	∞	2.10 ⁹	
egfr104	104 +89	748	2356	4min	241	1min 30s	$1.10^{6}/2.10^{6}$	
S = Sorts	δ = Sorts CS = Cooperative sorts P = Processes A = Actions							

egfr20: [Epidermal Growth Factor Receptor, by Özgür Sahin *et al.*] egfr104: [Epidermal Growth Factor Receptor, by Regina Samaga *et al.*] tcrsig40: [T-Cell Receptor Signaling, by Steffen Klamt *et al.*] tcrsig94: [T-Cell Receptor Signaling, by Julio Saez-Rodriguez *et al.*]

Summary

- 1. Inference of the complete Interaction Graph
- 2. Inference of the possibly partial Parametrization
- 3. Enumerate all full & admissible Parametrizations
 - \rightarrow Exhaustive approaches

Summary

- 1. Inference of the complete Interaction Graph
- 2. Inference of the possibly partial Parametrization
- 3. Enumerate all full & admissible Parametrizations
 - ightarrow Exhaustive approaches

Conclusion

Existing translation: René Thomas → Process Hitting New translation: Process Hitting → René Thomas

- \rightarrow New formal link between the two models
- \rightarrow More visibility to the Process Hitting

Joint work

Inoue Laboratory: National Institute of Informatics / Sokendai / Tokyo (Japan) MeForBio: IRCCyN / École Centrale de Nantes / Nantes (France) BISON: Institut für Automatik / ETH / Zürich (Switzerland)

Katsumi INOUE Professor & team leader

Inoue Laboratory

BISON

Loïc PAULEVÉ Post-doc

Olivier ROUX Professor & team leader

Morgan MAGNIN Associate professor

 $\begin{array}{c} \text{Maxime FOLSCHETTE} \\ 2^{nd} \text{ year PhD student} \end{array}$

MeForBio

Sufficient condition:

- no cycle
- each objective has a solution

Sufficient condition:

- no cycle
- each objective has a solution

R is true

Sufficient condition:

- no cycle
- each objective has a solution

Inconclusive

Introduction to the PH and inference of its underlying BRN o Annex: Graphs of local causality

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process → follow all objectives

Necessary condition:

There exists a traversal with no cycle

- objective → follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Necessary condition:

There exists a traversal with no cycle

- objective → follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is false

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process → follow all objectives

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

 \rightarrow avoid couples of processes bounded by an action

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- $\rightarrow \text{Hitless Graph}$

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Static Analysis: Fixed Points

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Exponential complexity w.r.t. the number of sorts

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- Introduces time features
- Parameters: either (r, sa), or the firing interval [d; D].

Introduction to the PH and inference of its underlying BRN o Annex: Stochastic Features

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

- Introduces time features
- Parameters: either (r, sa), or the firing interval [d; D].

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Introduces time features

• Parameters: either (r, sa), or the firing interval [d; D].

Stochastic Features

[Paulevé, Magnin, Roux in Transactions on Computational Systems Biology, 2011]

Introduces time features •

• Parameters: either (r, sa), or the firing interval [d; D].

- \rightarrow Tests by simulation
- \rightarrow Model-checking

- 1

0

≻ t

→ t