
Exhaustive analysis of dynamical
properties of Biological Regulatory

Networks with Answer Set Programming

Emna Ben Abdallah∗, Maxime Folschette†‡ , Olivier Roux∗ and Morgan Magnin∗§
∗LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597

(Institut de Recherche en Communications et Cybernétique de Nantes), 1 rue de la Noë, 44321 Nantes, France.
Email: {emna.ben-abdallah — olivier.roux — morgan.magnin}@irccyn.ec-nantes.fr

†School of Electrical Engineering and Computer Science, University of Kassel, Germany.
‡I3S, UMR 7271 — Université de Nice-Sophia Antipolis.

Email: maxime.folschette@unice.fr
§National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

Abstract—The combination of numerous simple influences
between the components of a Biological Regulatory Network
(BRN) often leads to behaviors that cannot be grasped intuitively.
They thus call for the development of proper mathematical
methods to delineate their dynamical properties. As a conse-
quence, formal methods and computer tools for the modeling and
simulation of BRNs become essential. Our recently introduced
discrete formalism called the Process Hitting (PH), a restriction of
synchronous automata networks, is notably suitable to such study.
In this paper, we propose a new logical approach to perform
model-checking of dynamical properties of BRNs modeled in
PH. Our work here focuses on state reachability properties on
the one hand, and on the identification of fixed points on the
other hand. The originality of our model-checking approach
relies in the exhaustive enumeration of all possible simulations
verifying the dynamical properties thanks to the use of Answer
Set Programming.

I. INTRODUCTION

This paper is motivated by the two specific – although
widespread – problems of steady states identification and
reachability checking in Biological Regulatory Networks
(BRNs) that describe genes and proteins interactions. Indeed,
the regulatory phenomena play a crucial role in biological
systems, and they need to be studied accurately. The study
of BRNs has consequently been the subject of numerous
researches [4], [5]. BRNs consist in sets of either positive or
negative mutual interactions between the components. With the
purpose of analyzing these systems, they are often modeled as
graphs which makes it possible to determine the possible evo-
lutions of all the interacting components of the system. Thus,
in order to address the formal checking of dynamical properties
within very large BRNs, new formalisms and conversely new
techniques have been proposed during the last decade. For
example, Boolean networks [6] have been widely used and
studied due to their simplicity and ability to handle noisy data.
But multi-valued discrete networks are now preferred due to
their higher modeling power.

The original aim of discrete networks [1], [2] was to by-
pass the complexity of continuous differential equation-based

modeling. However, these discrete representations quickly gain
in complexity – in order to represent more complex behaviors
or dynamical constraints – and in popularity – leading to the
creation of models with thousands of components, or even
dedicated databases. As more complex models arise, the need
to study them is also confronted to the increasing complexity
of such analyses that are usually exponential with classical
model checking methods [3].

In order to address the formal checking of dynamical
properties within very large BRNs, a new discrete formalism,
named Process Hitting (PH) [7], was recently proposed to
model concurrent systems having components with few quali-
tative levels. A PH describes, in an atomic manner, the possible
evolutions of a “process” (representing one component at
one level) triggered by the hit of other “processes” in the
system. Compared with other BRNs formalisms, the particular
structure of the PH makes the formal analysis of BRNs with
hundreds of components tractable [8].

Our goal in this paper is to develop exhaustive methods to
analyze Biological Regulatory Networks modeled in Process
Hitting. With respect to PH dynamics, this analysis consists in
three kinds of results:

- Finding all possible steady states of a BRN,
- Simulating the evolution of a biological network,
- Computing the shortest execution path to reach a goal.

The particularity of our contribution relies in the use of
Answer Set Programming (ASP) [9] to compute the results.
This declarative programming framework has proved efficient
to tackle models with a large number of components and
parameters. Our aim here is to assess its potential w.r.t. the
computation of some dynamical properties of PH models. We
chose the PH framework because it allows to represent a wide
range of dynamical models, and the particular form of its
actions can be easily represented using ASP, with exactly one
fact per action.



II. PRELIMINARY DEFINITIONS

A. Process Hitting

Definition 1 introduces the Process Hitting (PH) [7] which
allows to model a finite number of local levels, called
processes, grouped into a finite set of components, called sorts.
A process is noted ai, where a is the sort’s name, and i is
the process identifier within sort a. At any time, exactly one
process of each sort is active, and the set of active processes
is called a state.

The concurrent interactions between processes are defined
by a set of actions. Each action is responsible for the replace-
ment of one process by another of the same sort conditioned
by the presence of at most one other process in the current
state. An action is denoted by ai → bj � bk, which is read
as “ai hits bj to make it bounce to bk”, where ai, bj , bk are
processes of sorts a and b, called respectively hitter, target
and bounce of the action. We also call a self-hit any action
whose hitter and target sorts are the same, that is, of the form:
ai → ai � ak.

The PH is therefore a restriction of synchronous automata
networks, where each transition changes the local state of
exactly one automaton, and is triggered by the local states of at
most two distinct automata. This restriction on the actions was
chosen to permit the development of efficient static analysis
methods based on abstract interpretation [8]. However, despite
this, we can add non-biological components into the system,
called cooperative sorts, that allow to model the cooperation
between 2 or more components. This allows to partly palliate
the reduced expressivity of the PH framework.

Definition 1 (Process Hitting): A Process Hitting is a
triple (Σ,L,H) where:

• Σ = {a, b, . . . } is the finite set of sorts;

• L =
∏

a∈Σ La is the set of states where La =
{a0, . . . , ala} is the finite set of processes of sort a ∈ Σ
and la is a positive integer, with a 6= b⇒ La ∩ Lb = ∅;

• H = {ai → bj � bk ∈ La × L2
b | (a, b) ∈ Σ2 ∧ bj 6=

bk ∧ a = b⇒ ai = bj} is the finite set of actions.

Example 1: Figure 1 represents a PH model with four
sorts: a, b, z and a cooperative sort ab.

A state of the network is a set of active processes contain-
ing a single process of each sort. The active process of a given
sort a ∈ Σ in a state s ∈ L is noted s[a]. For any given process
ai we also note: ai ∈ s if and only if s[a] = ai. It means that
the biological component a is in the condition labeled i within
state s.

Definition 2 (Playable action): Let PH = (Σ,L,H) be a
Process Hitting and s ∈ L a state of PH. We say that the
action h = ai → bj � bk ∈ H is playable in state s if and
only if ai ∈ s and bj ∈ s (i.e., s[a] = ai and s[b] = bj).
The resulting state after playing h in s is called a successor
of s and is denoted by (s · h), where (s · h)[b] = bk and
∀c ∈ Σ, c 6= b⇒ (s · h)[c] = s[c].

B. Dynamical properties

The study of the dynamics of biological networks was the
focus of many works, explaining the diversity of network mod-

a

0 1

b

0 1

z

0

1

ab

00 01 10 11

Figure 1. An example of PH model with four sorts: a, b, ab and z. Boxes
represent the sorts (biological components and logic gates), circles represent
the processes (component levels), and the actions that model the dynamic
behavior are depicted by pairs of arrows in solid and dotted lines. a, b and
z are all either at level 0 or 1, and the cooperative sort ab has 4 levels
corresponding to the combination of the levels of sorts a and b. The grayed
processes stand for the possible initial state 〈a0, b0, ab00, z0〉.

elings and the different methods developed in order to check
dynamical properties. In this paper we focus on two main
properties of a PH model: the stable states and the reachability.
In the following, we consider a PH model PH = (Σ,L,H),
and we formally define these properties. How to verify them
with the help of ASP is the subject of the rest of this paper.

A fixed point, also called stable state, is a state which
has no successor, as given in Definition 3. Such states have
a particular interest as they denote states in which the model
stays indefinitely, and the existence of several of these states
denotes a switch in the dynamics [10].

Definition 3 (Fixed point): A state s ∈ L is called a fixed
point (or equivalently stable state) if and only if it has no
successors. In other words, s is a fixed point if and only if no
action is playable in this state:

∀ai → bj � bk ∈ H, ai /∈ s ∨ bj /∈ s .

A finer and more interesting dynamical property consists in
the notion of reachability. Such a property, formally expressed
in Definition 4, states that starting from a given initial state, it
is possible to reach a given goal, that is, a state that contains
a process or a set of processes. Checking such a dynamical
property is considered difficult as, in usual model-checking
techniques, it is required to build (a part of) the state graph,
which has an exponential complexity.

In the following, if s ∈ L is a state, we call scenario in s
any sequence of successively playable actions in s. We also
note Sce(s) the set of all scenarios in s. Moreover, we denote
by Proc =

⋃
a∈Σ La the set of all process in PH.



Definition 4 (Reachability property): If s ∈ L is a state
and A ⊆ Proc is a set of processes, we denote by P(s,A)
the following reachability property:

P(s,A) ≡ ∃δ ∈ Sce(s),∀ai ∈ A, (s · δ)[a] = ai .

The aim of this paper is to focus on the resolution of
issues related to the previous definitions: we give algorithms
enumerating all fixed points (Section IV) and verifying a
reachability property (Section V). This last approach also
requires to tackle the simulation of a PH model, that is, the
enumeration of all reachable states.

III. ANSWER SET PROGRAMMING

In this section, we briefly recapitulate the basic elements
of Answer Set Programming (ASP) [9], a declarative language
that proved efficient to address search problems. An answer set
program is a finite set of rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an (1)

where n ≥ m ≥ 0, a0 is a propositional atom or ⊥, all
a1, . . . , an are propositional atoms, and the symbol “not”
denotes negation as failure. The intuitive reading of such a rule
is that whenever a1, . . . , am are known to be true and there is
no evidence for any of the negated atoms am+1, . . . , an to be
true, then a0 has to be true as well. If a0 = ⊥, then the rule
becomes a constraint (in which case a0 is usually omitted). As
⊥ can never become true, if the right-hand side of a constraint
is validated, it invalidates the whole answer set.

In the ASP paradigm, the search of solutions consists in
computing the answer sets of a given program. An answer
set for a program is defined by Gelfond and Lifschitz [11]
as follows. An interpretation I is a finite set of propositional
atoms. A rule r as given in (1) is true under I if and only if:

{a1, . . . , am} ⊆ I ∧ {am+1, . . . , an} ∩ I = ∅ ⇒ a0 ∈ I .

An interpretation I is a model of a program P if each rule
r ∈ P is true under I . Finally, I is an answer set of P if I is
a minimal (in terms of inclusion) model of P I , where P I is
defined as the program that results from P by deleting all rules
that contain a negated atom that appears in I , and deleting all
negated atoms from the remaining rules. Programs can yield no
answer set, one answer set, or several answer sets. To compute
the answer sets of a given program, one needs a grounder (to
remove variables from the rules) and a solver. For the present
work, we used CLINGO1 [12] which is a combination of both.

IV. FIXED POINT ENUMERATION

The study of basins of attraction provides an important
understanding of the different behaviors of a Biological Reg-
ulatory Network (BRN) [10]. Indeed, a system will always
eventually end in a basin of attraction, and this may depend
on biological switches or other complex phenomena. Here we
focus on fixed points (also called stable states or steady states),
which are basins of attraction composed of only one state.

1We used CLINGO version 4.5.0: http://potassco.sourceforge.net/

A. Process Hitting translation in ASP

Before any analysis of the network, we first need to
translate it into ASP2. To do this we use the self-describing
predicates sort, process and action to define the sorts,
processes and actions of the network, respectively. Example 2
shows how a PH network is defined with these predicates.

Example 2 (Representation of a PH network in ASP):
The representation of the PH network of Figure 1 in ASP is
the following:

1 process("a", 0..1). process("b", 0..1).
2 process("z", 0..1). process("ab", 0..3).
3 sort(X) ← process(X,_).
4 action("a",0,"b",0,1). action("b",1,"b",1,0).
5 action("b",0,"ab",1,0). action("b",0,"ab",3,2).
6 action("b",1,"ab",0,1). action("b",0,"ab",2,3).
7 action("a",0,"ab",2,0). action("a",0,"ab",3,1).
8 action("a",1,"ab",0,2). action("a",1,"ab",1,3).
9 action("ab",3,"z",0,1).

In lines 1–2 we create the list of processes corresponding to
each sort. For example the sort a has 2 processes numbered
0 and 1; predicate “process("a", 0..1).” will in fact
expand into the two following predicates:

process("a", 0). process("a", 1).

The processes of the cooperative sort ab, which represents a
cooperation between the biological components a and b, have
been relabeled 0, 1, 2 and 3. Line 3 enumerates every sort
of the network from the previous information. In ASP, a word
starting with a capital letter is a variable, and the underscore
(“_”) is a placeholder for any value. Finally, all the actions
of the network are defined straightforwardly in lines 4–9;
for instance, the predicate “action("a",0,"b",0,1).”
represents the action a0 → b0 � b1.

B. Search of fixed points

The enumeration of fixed points requires to translate the
definition of a stable state (given in Definition 3) into an ASP
program. The first step consists of eliminating all processes
involved in a self-hit; the other processes are recorded by the
predicate shownProcess (lines 11–13).

11 hiddenProcess(A,I) ← action(A,I,A,I,K).
12 shownProcess(A,I) ← not hiddenProcess(A,I),
13 process(A,I).

Then, we have to browse all remaining processes of this graph
in order to generate all possible states, that is, all possible
combinations of processes by choosing only one process from
each sort (lines 14–15).

14 1 {selectProc(A,I) : shownProcess(A,I)} 1
15 ← sort(A).

The previous lines form a cardinality rule that creates as many
potential answer sets as the number of possible states to take
into account. Finally, the last step consists in filtering out any
state that is not a fixed point, or, in other words, eliminating

2All programs, including this translation and the methods described in
the following, are available online at: https://github.com/EmnaBenAbdallah/
verification-of-dynamical-properties PH



all candidate answer sets in which an action could be played.
For this, we use a constraint: any solution that satisfies the
body of this constraint will be removed from the answer set.
Regarding our problem, a state is eliminated if there exists an
action between two selected processes (lines 16–17).

16← action(A,I,B,J,_), selectProc(A,I),
17 selectProc(B,J), A!=B.

In the end, the fixed points of the considered model are exactly
the states represented in each remaining answer, described by
the atoms selectProc(A,I).

Example 3 (Fixed points enumeration): The PH model of
Figure 1 contains 4 sorts: a, b and z have 2 processes and
ab has 4; therefore, the whole model has 2 ∗ 2 ∗ 2 ∗ 4 = 32
states (whether they can be reached or not from a given initial
state). We can check that this model contains exactly 2 fixed
points: 〈b0, a1, ab2, z0〉 and 〈b0, a1, ab2, z1〉. Indeed, there is
no action between each two processes contained in this state
so no execution is possible from these.

If we execute the ASP program detailed above
(lines 11–17), alongside with the description of the PH
model given in Example 2 (lines 1–8), we obtain two answer
sets that match the expected result:

Answer 1 : selectProc(a,1), selectProc(b,0),
selectProc(z,0), selectProc(ab,2)

Answer 2 : selectProc(a,1), selectProc(b,0),
selectProc(z,1), selectProc(ab,2)

V. DYNAMICAL ANALYSIS

In this section, we present at first how to determine the
possible behavior of a PH model after a finite number of
steps with an ASP program. Then we tackle the reachability
question: are there scenarios starting from a given initial state
that allow to reach a given goal? If yes, we wish to obtain one
of the shortest paths to reach this goal.

A. Network simulation

In the previous section, enumerating the fixed points did
not require to encode the full dynamics of PH, but only a
condition, as it was a static verification. In this section, we
need to implement a dynamic simulation of the PH into ASP,
in order to apply an exhaustive analysis to search for the paths
allowing to reach the goal.

Firstly, we focus on the simulation, that is, the evolution
of a model in a limited number of steps. We therefore define
the predicate time(0..n) which sets the number of steps
we want to play. The value of n can be arbitrarily chosen;
for example, time(0..10) will compute the 11 first steps,
including the initial state. Moreover, in order to specify such
an initial state, we add several facts to list of all processes
included in this state:

22 init(activeProcess("a",0)).
23 init(activeProcess("b",0)).
24 init(activeProcess("ab",0)).
25 init(activeProcess("z",0)).

where, for instance, “a” is the name of the sort and “0” the
index of the active process.

The dynamics of a network is described by its ac-
tions; therefore, identifying the future states requires to
first identify the playable actions for each state. We re-
mind that an action is playable in a state when both its
hitter process and target process are active in this state
(see Definition 2). Therefore, we define an ASP predicate
playable(action(A,I,B,J,K),T) which is true when
the processes AI and BJ are active at step T.

The cardinality rule of line 26 creates a set of as many
predicates as there are possible simulations from the current
step, thus reproducing all possible branchings in the possible
simulations of the model, in the form of as many potential
answer sets. It is also needed to enforce the strictly asyn-
chronous dynamics which states that exactly one process can
change between two steps. To remove all scenarios where
two or more actions have been played between two steps,
we use the constraint of line 26. Thus, the remaining sce-
narios contained in the answer sets all strictly follow the
asynchronous dynamics of the PH. We finally witness that
sort B has been changed between steps T and T+1 with the
predicate change(B,T+1) of lines 28–29.

26 0 {play(Act,T)} 1 ← playable(Act,T), time(T).
27← 2 {play(Act,T)}, time(T).
28 change(B,T+1) ← play(action(_,_,B,_,_),T),
29 time(T).

Finally, the active processes at step T+1, thus representing
the next state in the dynamics depending on the chosen bounce,
can be computed straightforwardly. Indeed, this state contains
one updated active process BK resulting from the predicate
play(action(_,_,B,_,K),T) (lines 30–31) as well as
all the unchanged processes that correspond to the other sorts
(lines 32–34).

30 instate(activeProcess(B,K),T+1) ←
31 play(action(_,_,B,_,K),T), time(T).
32 instate(activeProcess(B,K),T+1) ←
33 not change(B,T+1),
34 instate(activeProcess(B,K),T), time(T).

The overall result of the pieces of program presented in this
subsection is an answer set containing one answer for every
possible simulation in n time steps, starting from a given initial
state.

B. Reachability verification

In this section, we focus on the reachability of a set of
processes which corresponds to the reachability property given
in Definition 4. We use the implementation computing the
dynamics given in the previous section, in order to solve this
reachability problem. Moreover, we first use a predicate goal
to list the processes we want to reach (line 35) and one can
add as many rules of this kind as there are objective processes.

35 goal(activeProcess("z",1)).

The literal reached(APr, T) then checks if a given active
process APr of the goal is contained in the state of step T
(line 36). Otherwise, the current answer will be eliminated by



a constraint (not detailed here) which verifies that all processes
of the goal are satisfied.

36 reached(APr, T) ← goal(APr), instate(APr, T).

However, the limitation of the method above is that the
user has to decide upstream the number of computed steps
that should be sufficient to reach all the goals. It is a main
disadvantage which is shared for instance by the method
proposed in [13]. One solution is then to use an incremental
computation mode, which is especially tackled by the in-
cremental solver of CLINGO [12]. The corresponding syntax
separates the program in 3 parts. The base part contains only
non-incremental elements and is thus used to declare general
rules that do not depend on the time steps (such as the data
related to the model). The body iteration is then written in the
step(t) and check(t) parts, which are computed at each
incremental step. Note that the step number t is not a variable
but a constant placeholder. The step(t) part comprises rules
depending on the time step, and the check(t) contains
constraints that stop the iteration when needed.

When using this new syntax, the obtained program is
almost identical to what was presented before, except that step
numbers T are replaced by the constant placeholder t. In each
step t, the program computes the following predicates:

– playable actions: playable(Act,t),
– chosen action to be played: play(Act,t),
– possible bounces: change(B,t),
– new state: instate(activeProcess(A,I),t+1)

They are computed in the step(t) part by the same way than
previously, but only for the current step. The solver then com-
pares its current answer sets with the t-dependent constraint
given in the check(t) part. Regarding our implementation,
this constraint, given in lines 37–38, simply states that all goals
have to be met. If this constraint invalidates all current answer
sets, the computation continues in the next iteration in order to
reach a valid answer set. As soon as one or more answer sets
are not filtered out by the constraint, they are returned and the
computation stops.

37 notReached(t) ← goal(F), not instate(F,t).
38← notReached(t).

C. Loops elimination

The iterative version of our tool will iterate indefinitely
if the dynamics of a model contains a loop. To palliate this,
we define the atom getNbrRepetition(X,T,t) which
contains the number X of identical active processes between
the current time step t and another previous step T, although
we do not detail here the method to compute this value. A
loop is then easily detected by comparing this value to the total
number of sorts (lines 39–41), and therefore simply eliminated
by the constraint of line 42.

39 loop(t, T) ← getNbrRepetition(X,T,t),
40 getNbreSorts(Y), X=Y.
41 noChange(t) ← loop(t, _).
42← noChange(t).

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a new logical approach to
address some dynamical properties of Process Hitting models.
The originality of our work consists in using ASP, a powerful
declarative programming paradigm. Thanks to the encoding
we introduced, we are not only able to tackle the enumeration
of fixed points but also to check reachability properties. The
major benefit of such a method is to get an exhaustive enu-
meration of all corresponding paths while still being tractable
for models with dozens of interacting components.

One of the perspectives of our work is to extend the set
of models on which our approach could be applied. We can
consider the addition of priorities or neutralizing edges, or
tackle other representations, such as Thomas modeling [2].
However, the range of the analysis can also be enriched, by
searching the set of initial states allowing to reach a given goal
instead of the other way around, or extending the method to
universal properties (like the AF operator in CTL).

ACKNOWLEDGMENT

The European Research Council has provided financial
support under the European Community’s Seventh Frame-
work Programme (FP7/2007–2013) / ERC grant agreement
no. 259267.

REFERENCES

[1] S. A. Kauffman, “Metabolic stability and epigenesis in randomly
constructed genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3,
pp. 437–467, 1969.

[2] R. Thomas, “Boolean formalization of genetic control circuits,” Journal
of Theoretical Biology, vol. 42, no. 3, pp. 563 – 585, 1973.

[3] D. Harel, O. Kupferman, and M. Y. Vardi, “On the complexity of
verifying concurrent transition systems,” Information and Computation,
vol. 173, no. 2, pp. 143–161, 2002.

[4] D. Thieffry and D. Romero, “The modularity of biological regulatory
networks,” Biosystems, vol. 50, no. 1, pp. 49–59, 1999.

[5] A. Shermin, M. Orgun et al., “A 2-stage approach for inferring gene reg-
ulatory networks using dynamic bayesian networks,” in Bioinformatics
and Biomedicine, 2009. BIBM’09. IEEE International Conference on.
IEEE, 2009, pp. 166–169.

[6] S. A. Kauffman, The origins of order: Self organization and selection
in evolution. Oxford university press, 1993.

[7] L. Paulevé, M. Magnin, and O. Roux, “Refining dynamics of gene reg-
ulatory networks in a stochastic π-calculus framework,” in Transactions
on Computational Systems Biology XIII. Springer, 2011, pp. 171–191.

[8] L. Paulevé, M. Magnin, and O. Roux, “Static analysis of biological reg-
ulatory networks dynamics using abstract interpretation,” Mathematical
Structures in Computer Science, vol. 22, no. 04, pp. 651–685, 2012.

[9] C. Baral, Knowledge representation, reasoning and declarative problem
solving. Cambridge university press, 2003.

[10] A. Wuensche, “Genomic regulation modeled as a network with basins
of attraction,” in Pacific Symposium on Biocomputing, R. B. Altman,
A. K. Dunker, L. Hunter, and T. E. Klien, Eds., vol. 3. World Scientific,
1998, pp. 89–102.

[11] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming,” in ICLP/SLP, 1988, pp. 1070–1080.

[12] M. Gebser, O. Sabuncu, and T. Schaub, “An incremental answer set
programming based system for finite modelcomputation,” in Logics in
Artificial Intelligence. Springer, 2010, pp. 169–181.

[13] A. Rocca, N. Mobilia, É. Fanchon, T. Ribeiro, L. Trilling, and K. Inoue,
“ASP for construction and validation of regulatory biological networks,”
in Logical Modeling of Biological Systems, L. F. del Cerro and
K. Inoue, Eds. Wiley-ISTE, 2014, pp. 167–206.


