
Learning any memory-less discrete semantics for
dynamical systems represented by logic programs

Tony Ribeiro1,2,4, Maxime Folschette3, Morgan Magnin2,4, and Katsumi Inoue4

1 Independant Researcher
2 Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
3 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

4 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,
Japan

In biology, learning dynamics can corresponds to the identification of influ-
ence of genes, signals, proteins and molecules that can help biologists to under-
stand their interactions. To tackle the problem of learning dynamical systems,
we propose a method called LFIT [1], which stands for Learning from Interpre-
tation Transition. This method constructs a model of the dynamics of a system
from the observation of its state transitions (Figure 1). We assume that the
system under study follows certain rules and that its observation, abstracted
as state transitions, can be described by these rules. By observing the system’s
transitions, we can infer the rule structure of the system and construct a log-
ical representation. The method and the algorithm GULA we propose in [2]
allow to learn discrete multi-valued systems dynamics under a large range of
update semantics including synchronous, asynchronous and more complex ones.
The learned model being human readable, it can be used to get insight about
the dynamical relations between the system components.

Raw Data State Transitions
Abstraction

Intelligible Models
Learning

Algorithms

LFIT

- Explanations
- Predictions
- Insights
- Analysis
...

Fig. 1: LFIT automatically models a system dynamics from its state transitions.

LFIT relies on a representation of the system consisting of a logic program,
which is a set of rules. Each rule has the following form:

avala ← bvalb ∧ cvalc ∧ · · · or equivalently: avala ← {bvalb , cvalc , · · · }

where a, b, c, ..., are variables and vala, valb, valc, ..., are values assigned to
the variables, constrained by their domains. The rule above has the following
meaning: variable a can take the value vala in the next dynamical step if variable
b (resp. c, ...) has value valb (resp. valc, ...) in the current dynamical step. The
actual dynamics depends on the chosen semantics.

Regarding a set of observations, the optimal program we want to learn should
both: (1) match the observations in a complete (all transitions are learned) and
correct (no spurious transition) way; (2) represent only minimal necessary inter-
actions (no overly-complex rules). GULA [2] guarantees to learn the optimal



2 T. Ribeiro et al.

00

11

01 10

// a = ¬b
a0
t ← b1t−1

a1
t ← b0t−1

// b = ¬a
b0t ← a1

t−1

b1t ← a0
t−1

00

11

01 10

// a = ¬b
a0
t ← b1t−1

a1
t ← b0t−1

// b = ¬a
b0t ← a1

t−1

b1t ← a0
t−1

// stability
a0
t ← a0

t−1

a1
t ← a1

t−1

b0t ← b0t−1

b1t ← b1t−1

Fig. 2: (Left) State transitions diagram and its optimal program for an example
with synchronous semantics. (Right) Same with asynchronous semantics.

00

11

01 10

// a = ¬b
a0
t ← b1t−1

a1
t ← b0t−1

// b = ¬a
b0t ← a1

t−1

b1t ← a0
t−1

// stability
a0
t ← a0

t−1

a1
t ← a1

t−1

// stability
b0t ← b0t−1

b1t ← b1t−1

// constraints
⊥←− a0

t , b
1
t , b

0
t−1

⊥←− a1
t , b

0
t , a

0
t−1

// constraints
⊥←− a1

t , b
0
t , b

1
t−1

⊥←− a0
t , b

1
t , a

1
t−1

Fig. 3: State transitions diagram featuring observations (black) and transitions
prevented by constraints (red), and its optimal program.

program of a set of transitions. For this, it starts from the program allowing
any behavior in any situation (rules of the form x← ∅ for each variable x) and
performs minimal refinements on it (addition of atoms in conjunction) based on
negative examples. Using the same update semantics that produces the observa-
tions, the optimal program reproduces the exact same transitions under a certain
formal condition (detailed in Theorem 1 of [2]). For example, in Figure 2, both
state transitions diagrams respect this condition and thus the observed dynam-
ics can be represented by a logic program that is learnable by GULA. When
the semantics that produce the observations is unknown or do not respect the
condition mentioned above, we also propose a second algorithm named Syn-
chronizer that additionally learns constraints allowing to reproduce any state
transitions diagram. Figure 3 gives an example of such a case. Here, GULA
is used to learn an over-set of transitions (black and red), and another special
call to GULA (with pre-processing) allows to learn constraints preventing the
spurious transitions (in red).

In [2], we also provided heuristics to use this approach on large and noisy,
along with theoretical results that show the correctness of our approaches and
practical evaluation performed on benchmarks from biological literature. The
source code of all our LFIT algorithms are available as free software at https:
//github.com/Tony-sama/pylfit under the GPL-3.0 license. A user-friendly
API allows to easily use LFIT on different kinds of datasets and is already being
used in several research collaborations.

References

1. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine
Learning 94(1), 51–79 (2014)

2. Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any memory-less dis-
crete semantics for dynamical systems represented by logic programs. Machine
Learning (2022)

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

	Learning any memory-less discrete semantics for dynamical systems represented by logic programs

